COS 226 Algorithms and Data Structures Spring 2014

Final Exam Solutions

1. Analysis of algorithms. (8 points)

(a) 20,000 seconds
The running time is cubic.

(b) ~ 48N bytes.

Each Node object uses 48 bytes: 16 (object overhead) + 8 (inner class) + 8 (reference
to Value) + 16 (references to two Node objects).

(c) BGLDF
2. Graph search.

(a) 0127653948
(b) 0123894765

3. Maximum flow.

(a) 26

(b) A-G-B-H-C-D-E-J

(c) 30

(d)

() B=C,I—=D,orl—J

Decreasing the weight of any edge in the mincut by one will decrease the value of the
mincut by one, which equals the value of the maxflow.

4. Shortest paths.

(a) 506

(b) 3

(c)
v | distTo[] edgeTol[]
0
1
2 49.0 3—2
3
4 39.0 3—4
5
6
7
8 50.0 3—>38
9 54.0 3—9

5. String sorting algorithms.
023131124

6. Ternary search tries.
A GCA TA TCTT TGT

The node labeled ? must contain the character G: it is the left link of its parent (so it must
be less than T) and it is the right-left child of its grandparent (so it must be greater than C).

7. Knuth-Morris-Pratt substring search.

8. Boyer-Moore substring search.

o
o =

(b) ETYEXCE

01 2 3 4 5 6 7 8 9
ANVl 2 2 4 5 6 2 8 9 6
B|/O O 3 0 0 3 7 0 0 3
c|i0 0 0 000 0 0 0 10
s|/A A B A A A B A A C

P T THE S

T H®E
wOOM®OE

ow s THC(®E
R OWS T HC(
R

C ARECROWSTHE

oOw s T HC(®E
®OWEOOB®®

More generally, any string that ends in YEXCE.

9. Regular expressions.

(a) (Ax | (ABx A)x)
(b) 1236781112

(c) Remove the e-transition edge from 4 to 10.

10. LZW compression.
CABBABCCAACAAARB

11. Burrows-Wheeler transform.

(a)
(b)

4
DBCACAAB

CDABDDCC

12. Problem identification.

C

A

Q

>

>

This is the HAMILTON-PATH problem, which is NP-complete. So, unless P = NP, there
does not exist a polynomial-time algorithm for HAMILTON-PATH, but this is unknown.

There is a directed path between every pair of vertices if and only if the digraph has a
single strong component. You can determine this in linear time by either of the following
two algorithms:
— Run Kosaraju-Sharir to compute the number of strong components.
— Pick an arbitrary vertex s; check whether every vertex is reachable from s (via DFS);
and check whether s is reachable from every vertex (via DFS in the reverse digraph).
You did this on the Wordnet assignment.

The running time of the best-known algorithm for computing the mazflow or mincut is
around EV but the asymptotic complexity remains an open research question.

This can be solved by a modified version of breadth-first search, where the vertices discov-
ered by following black edges are put at the back of the queue (as usual) and the vertices
discovered by following orange edges are put at the front of the queue.

Sort the integers in linear time, e.g., using LSD radiz sort. Then, scan a pointer i from
left to right and a pointer j from right to left. Compare a; + a; with 0: if equal, then
done; if less, then increment i; if greater, then decrement j.

Key-indexed counting accomplishes this.

Modify the Knuth-Morris-Pratt DFA so that the accept state has edges leaving it.

If the input has exactly 10000 bits and it starts with a 1, encode it by removing the
leading 1; otherwise prepend 10000 1s to the input.

13. Reductions.

(a)

i. Given s, we construct a string s’ of length N + 1 as follows:

e Replace each occurrence of A with 1

e Replace each occurrence of B with 2

e Append 0 to the end of the resulting string

The key to understanding the reduction is observing that the i** suffix of s is less
than the j' suffix of s if and only if the i** circular suffix of s’ is less than the

gt circular suffix of s'.

This follows because the sentinel character 0 is less than

any other character (so there are no wraparound effects when comparing circular

suffixes).

ii. If s = ABAAB, we would construct the string s’ = 121120.
iii. To complete the reduction, we set sa[i] = csal[i+1] for i =0 to N — 1, as below.

i s[i] | s'[i] csalil sal[i]

0 A 1 2 (AAB)
1 B 2 2 (112012) | 3 (AB)

2 A 1 3 (120121) | O (ABAAB)
3 A 1 0 (121120) | 4 (B)

4 B 2 4 (20) | 1 (BAAB)
5 0 1 (211201)

(b) i. Given s, we construct a string s’ of length 2N as follows:
e Replace each occurrence of 0 with AA
e Replace each occurrence of 1 with AB
e Replace each occurrence of 2 with BA
e Replace each occurrence of 3 with BB
The key to understanding the reduction is observing that the i** circular suffix of s
is less than the j** circular suffix of s if and only if the (2i)!" circular suffix of s’ is
less than the (25)"" circular suffix of s'.
ii. If s = 03122, we would construct the string s’ = AABBABBABA.

iii. To complete the reduction, we discard the entries in csa' [] that correspond to odd
circular suffixes (and scale the entries that correspond to even circular suffixes by
2), as below.

i s[i] | s'[i] csa'[i] csali]

0 0 A 0 (03122)
1 3 A 0 (AABBABBABA) 2 (12203)
2 1 B 4 (20312)
3 2 B 4 (ABBABAAABB) | 3 (22031)
4 2 A 1 (31220)
5 B 8 (BAAABBABBA)

6 B 6 (BABAAABBAB)

7 A

8 B

9 A 2 (BBABBABAAA)

Alternatively, we can construct the string s’ using some other prefix-free code, such as:
e Replace each occurrence of 0 with A
e Replace each occurrence of 1 with AB
e Replace each occurrence of 2 with ABB

e Replace each occurrence of 3 with ABBB

However, this construction makes it a bit more awkward to compute csa[] from csa'[].

14. Algorithm design.
Create an edge-weighted graph with N + 1 vertices (one for each dorm room plus an artificial
source vertex s).
e Include an edge between 7 and j with weight ¢;; (to represent potential fiber connections).

e Include an edge between s and i with cost w; (to represent potential routers).

Now, if the MST contains any edge of the form s-i, then we install a router in dorm room i;
if the MST contains any edge i-j not of this form, then we build a fiber connection between
dorm rooms i and j.

