
COS 226 Algorithms and Data Structures Fall 2017

Final

This exam has 16 questions worth a total of 100 points. You have 180 minutes. This exam
is preprocessed by a computer, so please write darkly and write your answers inside the
designated spaces.

Policies. The exam is closed book, except that you are allowed to use a one page cheatsheet
(8.5-by-11 paper, two sides, in your own handwriting). No electronic devices are permitted.

Discussing this exam. Discussing the contents of this exam before solutions have been posted
is a violation of the Honor Code.

This exam. Do not remove this exam from this room. In the space below, write your name and
NetID; mark your precept number; and write and sign the Honor Code pledge. You may fill in this
information now.

Name:

NetID:

Exam room: McCosh 10 Other

 #
P01 P02 P03 P03A P04 P05 P06

#Precept:

“I pledge my honor that I will not violate the Honor Code during this examination.”

Signature

2 PRINCETON UNIVERSITY

1. Initialization. (2 point)

In the space provided on the front of the exam, write your name and NetID; mark your
precept number; and write and sign the Honor Code pledge.

2. Memory. (5 points)

Consider the following representation for a ternary search trie for LZW compression with
string keys and integer values:

public class TernarySearchTrie {

private int n; // number of key-value pairs

private Node root; // root node

private static class Node {

private char c; // character

private int value; // value of key-value pair

private Node left; // left sub-trie

private Node mid; // middle sub-trie

private Node right; // right sub-trie

}

...

}

Using the 64-bit memory cost model from lecture and the textbook, how much memory does
a TernarySearchTrie object use as a function of the number of key–value pairs n. Use tilde
notation to simplify your answer.

∼ bytes

Hint 1: For LZW compression, the number of TST nodes equals the number of key–value
pairs (because every prefix of a key is also a key).

Hint 2: There is no 8-byte inner-class overhead for static nested classes.

COS 226 FINAL, FALL 2017 3

3. Running time. (6 points)

Let x be a StringBuilder object of length n. For each code fragment at left, write the letter
corresponding to the order of growth of the running time as a function of n.

Assume that Java’s StringBuilder data type represents a string of length n using a resizing
array of characters (with doubling and halving), with the first character in the string at index
0 and the last character in the string at index n − 1.

// converts x to a String

String s = "";

for (int i = 0; i < n; i++)

s += x.charAt(i);

// creates a copy of x

StringBuilder y = new StringBuilder();

for (int i = 0; i < n; i++)

y.append(x.charAt(i));

// reverses x

for (int i = 0; i < n/2; i++) {

char c1 = x.charAt(i);

char c2 = x.charAt(n - i - 1);

x.setCharAt(i, c2);

x.setCharAt(n - i - 1, c1);

}

// concatenates x with itself

for (int i = 0; i < n; i++)

x.append(x.charAt(i));

// removes the last n/2 characters of x

for (int i = 0; i < n/2; i++)

x.deleteCharAt(x.length() - 1);

// removes the first n/2 characters of x

for (int i = 0; i < n/2; i++)

x.deleteCharAt(0);

A. 1

B. logn

C. n logn

D. n

E. n2

4 PRINCETON UNIVERSITY

4. String sorts. (5 points)

The column on the left contains the original input of 24 strings to be sorted; the column on
the right contains the strings in sorted order; the other 5 columns contain the contents at
some intermediate step during one of the 3 radix-sorting algorithms listed below. Match each
algorithm by writing its letter in the box under the corresponding column.

0 null byte cost byte java byte byte

1 tree cost lifo cost load cost cost

2 lifo edge list edge find miss edge

3 list find miss flip tree hash find

4 miss flip hash find byte java flip

5 hash hash java hash edge load hash

6 java java load java trie leaf java

7 next lifo leaf lifo type flip lazy

8 load list flip list leaf link leaf

9 leaf load link load hash list left

10 flip leaf byte leaf path edge lifo

11 path lazy edge lazy sink lazy link

12 byte left lazy left link left list

13 edge link left link rank find load

14 lazy miss find miss null lifo miss

15 trie null next null lifo next next

16 find next null next flip null null

17 left path type path swap type path

18 type rank sink rank miss sink rank

19 sink sink trie sink list trie sink

20 link swap swap swap next swap swap

21 swap tree path tree left path tree

22 cost trie rank trie cost rank trie

23 rank type tree type lazy tree type

A E

A. Original input

B. LSD radix sort

C. MSD radix sort

D. 3-way radix quicksort (no shuffle)

E. Sorted

COS 226 FINAL, FALL 2017 5

5. Depth-first search. (6 points)

Run depth-first search on the following digraph, starting from vertex 0. Assume the adjacency
lists are in sorted order: for example, when iterating over the edges pointing from 7, consider
the edge 7→ 1 before either 7→ 6 or 7→ 8.

Final, Fall 2017

76

21

9

5

3

4

8

0

postorder:
preorder:

run DFS from here

(a) List the 10 vertices in preorder.

0

(b) List the 10 vertices in postorder.

0

(c) Does this digraph have a topological order? If yes, write one in the box below; if no,
succinctly explain why not.

6 PRINCETON UNIVERSITY

6. Breadth-first search. (4 points)

Run breadth-first search on the following digraph, starting from vertex 0. Assume the adja-
cency lists are in sorted order: for example, when iterating over the edges pointing from 7,
consider the edge 7→ 1 before either 7→ 6 or 7→ 8.

Final, Fall 2017

76

21

9

5

3

4

8

0

run BFS from here

List the 10 vertices in the order in which they are added to the queue.

0

COS 226 FINAL, FALL 2017 7

7. Maximum flow. (10 points)

Consider the following flow network and flow f from the source vertex A to sink vertex J .

Final, Fall 2017

13 / 22
26 / 26

5 / 13

1 / 8

37 / 3710 / 14F

flow capacity

A

6 / 6
0 /

8 9 / 10

9 / 9

38 / 3832 / 39 I

E

J

18 / 1814 / 29

10 / 10

C

augmenting path: A->B->C->H->I->D->J
bottleneck capacity = 5
min cut: { A, B, C, F, G }
max flow value = 55

12 / 12

B

H

D

3 / 19

source

sink

G

(a) What is the value of the flow f? Mark the correct answer.

47 50 51 52 53 54 55 65 70 79

#

(b) What is the capacity of the cut {A,F,G}? Mark the correct answer.

41 46 49 50 56 63 65 74 78 100

#

(c) Starting from the flow f , perform one iteration of the Ford–Fulkerson algorithm. Which
vertices are on the (unique) augmenting path? Mark all that apply.

A B C D E F G H I J

◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻

(d) What is the bottleneck capacity of the augmenting path? Mark the correct answer.

0 1 2 3 4 5 6 7 8 9

#

(e) Which vertices are on the source side of the (unique) minimum cut? Mark all that apply.

A B C D E F G H I J

◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻

8 PRINCETON UNIVERSITY

8. LZW compression. (6 points)

Expand the following LZW-encoded sequence of 8 hexadecimal integers.

43 41 41 81 42 84 41 80

Assume the original encoding table consists of all 7-bit ASCII characters and uses 8-bit
codewords. Recall that codeword 80 is reserved to signify end of file.

(a) What was the encoded message?

C

(b) Which of the following strings are in the LZW dictionary upon termination of the algo-
rithm? Mark all that apply.

AA AB ABA AC ACA BC CA CAA CAB CABA CABC

◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻

ASCII encoding. When you HexDump a bit-
stream that contains ASCII-encoded charac-
ters, the table at right is useful for reference.
Given a two digit hex number, use the first
hex digit as a row index and the second hex
digit as a column index to find the character
that it encodes. For example, 31 encodes the
digit 1, 4A encodes the letter J, and so forth.
This table is for 7-bit ASCII, so the first hex
digit must be 7 or less. Hex numbers starting
with 0 and 1 (and the numbers 20 and 7F)
correspond to non-printing control charac-
ters. Many of the control characters are left over from the days when physical devices
such as typewriters were controlled by ASCII input; the table highlights a few that you
might see in dumps. For example, SP is the space character, NUL is the null character, LF
is line feed, and CR is carriage return.

In summary, working with data compression requires us to reorient our thinking about
standard input and standard output to include binary encoding of data. BinaryStdIn
and BinaryStdOut provide the methods that we need. They provide a way for you to
make a clear distinction in your client programs between writing out information in-
tended for file storage and data transmission (that will be read by programs) and print-
ing information (that is likely to be read by humans).

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 SP ! " # $ % & ‘ () * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [\] ^ _

6 ` a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

Hexadecimal-to-ASCII conversion table

8155.5 � Data Compression

For reference, this is the hexadecimal-to-ASCII conversion table from the textbook.

COS 226 FINAL, FALL 2017 9

9. Ternary search tries. (6 points)

Consider the following TST, where the values are shown next to the nodes of the corresponding
string keys. Each node labeled with a ? contains some uppercase letter (possibly different
for each node).

Final, Fall 2017

Z

?I

OG

O O

E

E

R?

?

?

T

T

?

R

?

14

109

1311

51

4

I 6

R 2 ? 7

12

8

3

Which of the following string keys are (or could be) in the TST? Mark all that apply.

TIGER TILE TO TOO TREE TRIE TRUE TWO URGE

∎ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻

10 PRINCETON UNIVERSITY

10. Knuth–Morris–Pratt substring search. (6 points)

Below is a partially-completed Knuth–Morris–Pratt DFA for the string

C C A C C A C B

over the alphabet { A, B, C }. Complete the third row of the table.

0 1 2 3 4 5 6 7

A 0 0 3 0 0 6 0 0

B 0 0 0 0 0 0 0 8

C

s C C A C C A C B

Final, Spring 2017 KMP

0 1 5 6 7 83 42

Feel free to use this diagram for scratch work.

COS 226 FINAL, FALL 2017 11

11. Programming assignments. (12 points)

Answer the following questions related to COS 226 programming assignments.

(a) Suppose that in the WordNet assignment, you needed to check whether a digraph G is
a rooted tree (instead of a rooted DAG). A rooted tree is a digraph that contains a root
vertex r such that there is exactly one directed path from every vertex to r.

Which of the following properties hold for all rooted trees? Mark all that apply.

◻ There is exactly one vertex of outdegree 0.

◻ There is exactly one vertex of indegree 0.

◻ There are no directed cycles.

◻ There is a directed path between every pair of vertices.

◻ There are V − 1 edges, where V is the number of vertices.

◻ There are E − 1 vertices, where E is the number of edges.

(b) In the Seam Carving assignment, what is the worst-case running time of an efficient
algorithm for finding a horizontal seam of minimum total energy in a picture of width
W and height H? Mark the best answer.

W H W +H WH WH2 W 2H

#

12 PRINCETON UNIVERSITY

(c) Suppose that you compress the text of Algorithms, 4th edition using one of the following
sequences of transformations:

A. Huffman coding

B. Burrows–Wheeler transform

C. Burrows–Wheeler transform Ð→ Huffman coding

D. Burrows–Wheeler transform Ð→ move-to-front coding Ð→ Huffman coding.

E. Huffman coding Ð→ Burrows–Wheeler transform.

Which of the following can you infer? Mark all that apply.

◻ A achieves a better compression ratio than B.

◻ C achieves a better compression ratio than A.

◻ E achieves a better compression ratio than A.

◻ D achieves the best compression ratio among A–E.

(d) In which of the following programming assignments was the super-source trick (implicitly
or explicitly adding a source vertex to convert a graph or digraph with multiple sources
into one with a single source) a key component in improving the order of growth of the
running time? Mark all that apply.

◻ Assignment 1 (Percolation)

◻ Assignment 2 (Deques and Randomized Queues)

◻ Assignment 3 (Autocomplete)

◻ Assignment 4 (8-Puzzle)

◻ Assignment 5 (Kd-Trees)

◻ Assignment 6 (WordNet)

◻ Assignment 7 (Seam Carving)

◻ Assignment 8 (Burrows–Wheeler)

COS 226 FINAL, FALL 2017 13

12. Properties of minimum spanning trees. (5 points)

Let G be a connected graph with distinct edge weights. Let S be a cut that contains exactly 4
crossing edges e1, e2, e3, and e4 such that weight(e1) < weight(e2) < weight(e3) < weight(e4).
For each statement at left, write the letter corresponding to the best-matching description at
right.

Kruskal’s algorithm adds edge e1 to
the MST.

Prim’s algorithm adds edge e4 to the
MST.

If Kruskal’s algorithms adds edges e1,
e2, and e4 to the MST, then it also
adds e3.

If edges e1 and e2 are both in the MST,
then Kruskal’s algorithm adds e1 to
the MST before e2.

If edges e1 and e2 are both in the MST,
then Prim’s algorithm adds e1 to the
MST before e2.

A. True for every such edge-weighted graph G
and every such cut S.

B. False for every such edge-weighted graph G
and every such cut S.

C. Neither A nor B.

14 PRINCETON UNIVERSITY

13. Properties of shortest paths. (5 points)

Let G be any DAG with positive edge weights and assume all vertices are reachable from the
source vertex s. For each statement at left, identify whether it is a property of Dijkstra’s
algorithm and/or the topological sort algorithm by writing the letter corresponding to the
best-matching term at right.

If G contains the edge v → w, then vertex v is
relaxed before vertex w.

Each vertex is relaxed at most once.

If the length of the shortest path from s to v is less
than the length of the shortest path from s to w,
then vertex v is relaxed before vertex w.

Immediately after relaxing any edge v → w,
distTo[w] is the length of the shortest path from
s to w.

During each edge relaxation, for each vertex v,
distTo[v] either remains unchanged or decreases.

A. Dijkstra’s algorithm.

B. Topological sort algorithm.

C. Both A and B.

D. Neither A nor B.

Recall that relaxing a vertex v means relaxing every edge pointing from v.

COS 226 FINAL, FALL 2017 15

14. Regular expressions. (6 points)

Consider the following NFA, where 0 is the start state and 12 is the accept state:

Final, Fall 2017

0 1 3 4 5 6 7 8 9 10 11

(A A B A)

122

ε-transition

A* | (AB*A)+

match transition

(a) Complete the regular expression below so that it matches the same set of strings as the
NFA by writing one of the following symbols in each box:

() * + |

(A A B A)

(b) Suppose that you simulate the NFA with the following input:

A A A A A

In which state(s) could the NFA be after reading the entire input? Mark all that apply.

0 1 2 3 4 5 6 7 8 9 10 11 12

◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻

16 PRINCETON UNIVERSITY

15. Shortest discount path. (8 points)

Consider the following variant of the shortest path problem.

Shortest-Discount-Path. Given an edge-weighted digraph G with positive edge weights,
a source vertex s, and a destination vertex t ≠ s, find the weight of the shortest discount path
from s to t, where the weight of a discount path is the sum of the weights of the edges in the
path, but with the largest weight in the path discounted by 50%.

For example, in the Shortest-Discount-Path instance below, the shortest path from A to
E is A→ B → C →D → E (with weight 120 = 20 + 10 + 30 + 60) but the the shortest discount
path is A→ B → C → E (with weight 80 = 20 + 10 + 100

2).
Final, Fall 2017

C

A D E

B

20

80

10

60

10030
25

source s destination t

edge-weighted digraph G

Design an efficient algorithm for solving the Shortest-Discount-Path problem by solving a
traditional shortest path problem on a related edge-weighted digraph G′ with positive weights.
To demonstrate your algorithm, draw G′ for this Shortest-Discount-Path instance in the
space provided the facing page.

COS 226 FINAL, FALL 2017 17

Draw G′ here. Be sure to specify the weight of each edge and label the source and destination.

Hint: you shouldn’t need more than 10 vertices or 21 edges.

In general, how many vertices and edges does G′ have as a function of V and E?
(where V and E denote the number of vertices and edges in G, respectively)

number of vertices in G′ number of edges in G′

18 PRINCETON UNIVERSITY

16. Substring of a circular string. (8 points)

Design an algorithm to determine whether a string s is a substring of a circular string t.
Let m denote the length of s and let n denote the length t. Assume the binary alphabet.

For reference, the following table shows a few examples:Final, Fall 2017

string s circular string t substring

ABBA BBBBBBABBABBBBB yes

ABBA BABBBBBABBBBBAB yes

BBAABBAABBAABB ABBA yes

ABBA BBBBBBBABABBBB no

BAABAAB ABBA no

Give a crisp and concise English description of your algorithm in the space below.

Your answer will be graded for correctness, efficiency, and clarity. For full credit, the order
of growth of the worst-case running time must be m + n.

This page is provided as scratch paper. If you tear it out, please write your name, NetID, and
precept number in the space provided and return it inside your exam.

Name: NetID: Precept:

