
COS 226 Algorithms and Data Structures Fall 2012

Final Exam Solutions

1. Analysis of algorithms.

(a) 400 seconds

(b) ∼ 4MR+ 2M (or ∼ 4MR)

2. Graphs.

(a) The method marked[v] returns true if and only if there is a directed path from s to v.

(b) E + V , as usual for depth-first search.

(c) V (to initialize the marked[] array).

(d) V 2. Note that E ≤ V 2 since there are no parallel edges.

3. Graph search.

(a) reverse postorder: 0 1 6 5 2 8 9 4 3 7

(b) preorder: 0 1 6 2 7 8 3 9 4 5

4. Minimum spanning trees.

(a) 10 20 30 40 50 100

(b) x ≤ 110.

(c) y ≤ 60.

(d) z ≤ 80.

5. Shortest paths.

(a) 0 1 5 4

(b) x = 8.0

(c) y > 12.0. (We also accepted y ≥ 12.0.)

1

(d) vertex 2

(e)

v distTo[] edgeTo[]

3 20.0 2→ 3

6 35.0 2→ 6

6. Maximum flow.

(a) 25

(b) A→ G→ B → C → H → I → J

(c) 25 + 3 = 28

(d) {A,B,C, F,G}

(e) 28

7. String sorting algorithms.

0 3 4 4 2 3 2 2 1

8. Ternary search tries.

(a) A (7), CAA (5), CGA (4), CGCA (11), TA (8), TGT (12), TT (9)

(b)
Final, Fall 2012

A

G C

A A

A A

A

T

TA

G

T

G

T

C

A

C

7

135

114

3

98

17

12

T

T 0

A99

2

9. Knuth-Morris-Pratt substring search.

ABCABABABCAA

0 1 2 3 4 5 6 7 8 9 10 11

A 1 1 1 4 1 6 1 8 1 1 11 12

B 0 2 0 0 5 0 7 0 9 0 0 5

C 0 0 3 0 0 3 0 3 0 10 0 0

s A B C A B A B A B C A A

10. Boyer-Moore substring search.

Final, Fall 2012

M E N D E R O F R O A D S W I T H T H E A I D O F T H E

I D O F T H E

I D O F T H E

I D O F T H E

I D O F T H E

I D O F T H E

I D O F T H E

11. Regular expressions.

0→ 3 2→ 10 3→ 4 3→ 9 5→ 6 6→ 5 6→ 7 9→ 3

The edges 8 → 9, 9 → 10, and 10 → 11 are the remaining ε-transitions edges. Here is a
drawing of the NFA.

Final, Fall 2012

(B C D * A) *

0 1 2 3 4 5 6 7 8 9

| ()

10 11

0 1 2 3 4 5 6 7 8 9 10

(B C D * A) *| ()

11

3

12. Huffman codes.

(a)

char freq encoding

B 2 01111

F 1 01110

H 3 0110

I ? 00

L 5 010

M 15 10

S 15 11

Final, Fall 2012

M

0

I

L

0 1

B

H

0

1

1

S

10

1

0

F

0

1

(b) 6 ≤ freq(I) ≤ 15.

• Since I is not touched until after merging L with {B,F,H}, freq(I) ≥ freq(L) = 5
and freq(I) ≥ freq({B,F,H}) = 2 + 1 + 3 = 6.

• Since I is merged with {B,F,H,L} instead of M or S, freq(I) ≤ freq(M) = 15
and freq(I) ≤ freq(S) = 15.

4

13. Data compression.

K X M R D S

8
255 Run-length coding with 8-bit counts for best case inputs of N bits.

The best case is an alternating sequence of 255 0s and 255 1s. Each
sequence of 255 0s (or 255 1s) is encoded with 8 bits (11111111).

8
1 Run-length coding with 8-bit counts for worst-case inputs of N bits.

The worst case is an alternating sequence of 0s and 1s. Each bit is
encoded with 8 bits (00000001).

1
8 Huffman coding for best-case inputs of N characters.

The best case is when one character occurs 100% of the time (or all
but a constant number of times), in which case it is encoded using
1 bit.

8
8 The worst case is when each of the 256 characters occurs with equal

frequency. In this case, each character is encoded using 8 bits.

12
8×3840 LZW coding for best-case inputs of N characters using 12-bit code-

words. Recall: no new codewords are added to the table if the table
already has 212 = 4096 entries.

The best case is one 8-bit character, say A, repeated N times. The
table contains 12-bit codewords for A, AA, AAA, and so on, all the
way up to 212 − 256 = 3840 As when the table gets full. After this
point, each sequence of 3840 consecutive As is encoded using only 12
bits.

12
8 LZW coding for worst-case inputs of N characters using with 12-bit

codewords. Recall: no new codewords are added to the table if the
table already has 212 = 4096 entries.

The worst case is when the codeword table gets filled up with useless
codewords and then the rest of the message cannot take advantage
of any of the added codewords. An input of 3840 As followed by
N − 3840 Bs would have this property. In this case, each B requires
a 12-bit codeword.

A. ∼ 1/4096

B. ∼ 1/3840

C. ∼ 1/2731

D. ∼ 1/2560

E. ∼ 1/320

F. ∼ 1/256

G. ∼ 1/255

H. ∼ 1/128

I. ∼ 1/127

J. ∼ 1/32

K. ∼ 8/255

L. ∼ 1/16

M. ∼ 1/8

N. ∼ 1/7

O. ∼ 1/4

P. ∼ 1/2

Q. ∼ 2/3

R. ∼ 1

S. ∼ 3/2

T. ∼ 2

U. ∼ 3

V. ∼ 4

W. ∼ 7

X. ∼ 8

5

14. Algorithm design.

(a) Here is an elegant solution:

• For each string s, form its L circular suffixes and suffix sort them (using LSD radix
sort). Use the lexicographically first sorted suffix as its fingerprint. Two strings are
cyclic rotations of one another if and only if they have the same fingerprint.

• Sort the N fingerprints (using LSD radix sort) and check adjacent fingerprints for
equality. If any two are equal, then output yes; otherwise output no.

(b) The order of growth of the running time is NL2.

• Explicitly forming the L circular suffixes of a string takes L2 time and space. Sorting
the L suffixes (each of length L) them takes L2 time using LSD radix sort. Doing
this for each string takes a total of NL2 time.

• Sorting the N fingerprints (each of length L) takes NL time using LSD radix sort.
Checking for adjacent entries that are equal also takes NL time.

The running time can be improved to NL in the worst case by implicitly forming the L circular
suffixes of a string and using a linear-time suffix sorting algorithm to compute its fingerprint.

Here is an alternate NL2 time solution:

• Explicitly (or implicitly) form the L circular suffixes of each of the N strings and put
all NL of them into an array.

• Sort the NL strings using LSD radix sort.

• Check for adjacent entries that both are equal and are circular suffixes of different
original strings. The latter check is necessary if one of the original strings happens to
be a nontrivial cyclic rotation of itself, such as stackstack.

15. Reductions.

(a) We need to create a graph G′ such that its longest cycle corresponds to a longest s-t
path in G. The intuition is that adding an edge between s and t turns any s-t path of
length k in G into a cycle of length k + 1 in G′. This doesn’t quite work because there
might be a cycle in G that is longer than the length of the longest s-t path.

Instead of adding an edge between s and t, we add a new path (with new vertices) be-
tween s and t of length V . Now, s-t paths in G of length k ≥ 1 are in 1-1 correspondence
with cycles in G′ of length k + V . Thus, finding the longest cycle in G′ provides the
longest s-t path in G.

Final, Fall 2012 Longest Path

4t

1s

5

2

6

3

4t

1s

5

2

6

3

G'

(b) (i) and (iii)

6

