
COS 226 Algorithms and Data Structures Fall 2011

Final

This test has 14 questions worth a total of 100 points. You have 180 minutes. The exam is closed
book, except that you are allowed to use a one page cheatsheet (8.5-by-11, both sides, in your own
handwriting). No calculators or other electronic devices are permitted. Give your answers and
show your work in the space provided. Write out and sign the Honor Code pledge before
turning in the test.

“I pledge my honor that I have not violated the Honor Code during this examination.”

Problem Score Problem Score
0 7
1 8
2 9
3 10
4 11
5 12
6 13

Sub 1 Sub 2

Total

Name:

Login ID:

Precept:

P01 11 Maia Ginsburg
P01A 11 Aman Dhesi
P02 12:30 Sasha Koruga
P02A 12:30 Joey Dodds
P03 1:30 Maia Ginsburg
P03A 1:30 Joey Dodds

1

2 PRINCETON UNIVERSITY

0. Miscellaneous. (1 point)

Write your name and Princeton NetID in the space provided on the front of the exam, and
circle your precept number.

1. Analysis of algorithms. (10 points)

(a) Suppose that you collect the following memory usage data for a program as a function
of the input size N .

N memory

1,000 10,000 bytes

8,000 320,000 bytes

64,000 10,240,000 bytes

512,000 327,680,000 bytes

Estimate the memory usage of the program (in bytes) as a function of N and use tilde
notation to simplify your answer.

Hint: recall that logb a = lg a/ lg b.

COS 226 FINAL, FALL 2011 3

(b) For each function on the left, give the best matching order of growth of the running time
on the right.

−−B−− public static int f1(int N) {

int x = 0;

for (int i = 0; i < N; i++)

x++;

return x;

}

−−−−− public static int f2(int N) {

int x = 0;

for (int i = 0; i < N; i++)

for (int j = 0; j < i; j++)

x++;

return x;

}

−−−−− public static int f3(int N) {

if (N == 0) return 1;

int x = 0;

for (int i = 0; i < N; i++)

x += f3(N-1);

return x;

}

−−−−− public static int f4(int N) {

if (N == 0) return 0;

return f4(N/2) + f1(N) + f4(N/2);

}

−−−−− public static int f5(int N) {

int x = 0;

for (int i = N; i > 0; i = i/2)

x += f1(i);

return x;

}

−−−−− public static int f6(int N) {

if (N == 0) return 1;

return f6(N-1) + f6(N-1);

}

−−−−− public static int f7(int N) {

if (N == 1) return 0;

return 1 + f7(N/2);

}

A. logN

B. N

C. N logN

D. N2

E. 2N

F. N !

4 PRINCETON UNIVERSITY

2. Graph search. (8 points)

Consider the following acyclic digraph. Assume the adjacency lists are in sorted order: for
example, when iterating through the edges pointing from 0, consider the edge 0 → 1 before
0 → 6 or 0 → 7.

Topological sort, Fall 2011

2

4

5

1

0

8 37

6

(a) Compute the topological order by running the DFS-based algorithm and listing the
vertices in reverse postorder.

2

___ ___ ___ ___ ___ ___ ___ ___ ___

(b) Run breadth-first search on the digraph, starting from vertex 2. List the vertices in the
order in which they are dequeued from the FIFO queue.

2

___ ___ ___ ___ ___ ___ ___ ___ ___

COS 226 FINAL, FALL 2011 5

3. Minimum spanning trees. (8 points)

Consider the following edge-weighted graph with 9 vertices and 19 edges. Note that the edge
weights are distinct integers between 1 and 19.

Minimum Spanning Tree, Fall 2011

I

A

C

F

G

H

B

E

D

11

10

9
2

12

4

1

8

15

13
3

6

17
19

5

14

18

16

7

(a) Complete the sequence of edges in the MST in the order that Kruskal’s algorithm includes
them (by specifying their edge weights).

1

____ ____ ____ ____ ____ ____ ____ ____

(b) Complete the sequence of edges in the MST in the order that Prim’s algorithm includes
them (by specifying their edge weights).

1

____ ____ ____ ____ ____ ____ ____ ____

6 PRINCETON UNIVERSITY

4. Shortest paths. (8 points)

Suppose that you are running Dijkstra’s algorithm on the edge-weighted digraph (below left),
starting from a source vertex s. The table (below right) gives the edgeTo[] and distTo[]

values immediately after vertex 2 has been deleted from the priority queue and relaxed.

edge weight

0 → 2 6.0

0 → 4 6.0

0 → 5 17.0

1 → 3 17.0

2 → 5 11.0

2 → 7 6.0

3 → 0 1.0

3 → 10 3.0

3 → 1 25.0

3 → 6 13.0

3 → 8 9.0

4 → 5 3.0

4 → 6 4.0

4 → 7 3.0

4 → 8 1.0

4 → 9 15.0

edge weight

5 → 1 12.0

5 → 2 1.0

5 → 4 3.0

5 → 7 10.0

5 → 8 4.0

6 → 0 12.0

6 → 1 5.0

6 → 2 1.0

6 → 4 9.0

6 → 9 4.0

7 → 1 7.0

7 → 5 11.0

7 → 9 6.0

10 → 1 15.0

10 → 5 2.0

10 → 8 7.0

v distTo[] edgeTo[]

0 1.0 3 → 0

1 17.0 5 → 1

2 6.0 5 → 2

3 0.0 null

4 7.0 0 → 4

5 5.0 10 → 5

6 13.0 3 → 6

7 12.0 2 → 7

8 9.0 3 → 8

9 ∞ null

10 3.0 3 → 10

(a) Give the order in which the first 5 vertices were deleted from the priority queue and
relaxed.

2

(b) Modify the table (above right) to show the values of the edgeTo[] and distTo[] arrays
immediately after the next vertex has been deleted from the priority queue and relaxed.
Circle those values that changed.

COS 226 FINAL, FALL 2011 7

5. String sorting. (6 points)

Consider the first call to key-indexed counting when running LSD string sort on the input
array a[] of 20 strings. Recall that key-indexed counting is comprised of four loops. Give the
contents of the integer array count[] after each of the first three loops (for indices between
'a' and 'g'); then, give the contents of the string array (for the indices 0–5 and 18–19) after
the fourth loop.

i a[i]

0 badge

1 freed

2 blurb

3 embed

4 basic

5 field

6 bluff

7 dwarf

8 fudge

9 climb

10 cycle

11 bleed

12 budge

13 crumb

14 cubic

15 cable

16 blend

17 cliff

18 bread

19 cache

c
count[]

(first)
count[]

(second)
count[]

(third)
...

...
...

...

'a'

'b'

'c'

'd'

'e'

'f'

'g'
...

...
...

...

i
a[i]

(fourth)

0

1

2

3

4

5

6 not required

7 not required

8 not required

9 not required

10 not required

11 not required

12 not required

13 not required

14 not required

15 not required

16 not required

17 not required

18

19

8 PRINCETON UNIVERSITY

6. Substring search. (6 points)

Below is a partially-completed Knuth-Morris-Pratt DFA for a string s of length 11 over the
alphabet { A , B }. Reconstruct the DFA and s in the space below.

0 1 2 3 4 5 6 7 8 9 10

A 0 0 10 11

B 5 2 4

s A

COS 226 FINAL, FALL 2011 9

7. Regular expressions. (5 points)

You have been promoted to COS 226 grader. Circle each NFA below that could have been
constructed by the RE-to-NFA algorithm from the textbook. Otherwise, explain one mistake
in each invalid NFA.

The match transitions are drawn with solid lines; the ε-transitions are drawn with dotted
lines.

)

Final, Fall 2011

(A B (C | D E))

0 1 2 3 4 5 6 7 8 9 10

((A B) *)

0 1 2 3 4 5 6 7 8 9

)

10

(i)

(ii)

((A * B * C)

0 1 2 3 4 5 6 7 8

(iii)

(*

9

Final, Fall 2011

(A B C | D) *)

0 1 2 3 4 5 6 7 8 9 10

(A B C | A B D

0 1 2 3 4 5 6 7

)

8 9

(iv)

(v)

(

10 PRINCETON UNIVERSITY

8. Ternary search tries. (7 points)

Consider the following ternary search trie, with string keys and integer values.

D

Final, Fall 2011

J

D

D

F

B D E

C

G

P

O

L E

P0

13

2

4

7 8 6

S

G

5

9

Circle which one or more of the following strings are keys in the TST.

B BD C CD D E FD JLO JP JPEG JPEGS JPG PEG PEGS

COS 226 FINAL, FALL 2011 11

9. String symbol table implementation. (7 points)

For each of the operations on the left, list which one or more of the symbol table implemen-
tations on the right can be used to efficiently implement it. By efficient, we mean L logN
or better on typical ASCII strings (in random order) of average length L, where N is the
number of keys in the data structure.

−−−−− Find the value associated with a given
string key in the data structure.

−−−−− Associate a value with a string key.

−−−−− Delete a string key (and its associated
value) from the data structure.

−−−−− Find the smallest string key in the data
structure.

−−−−− Find the smallest string key in the data
structure that is greater than or equal
to a given string.

−−−−− Find the string key in the data struc-
ture that is the longest prefix of a given
string.

−−−−− How many string keys in the data struc-
ture starts with a given prefix?

A. Unordered array.

B. Ordered array.

C. Red-black BST.

D. Separate-chaining hash table.

E. Ternary search trie.

12 PRINCETON UNIVERSITY

10. Data compression. (10 points)

(a) Consider the following Huffman trie of a message over the 5-character alphabet {A,B,C,D,E}:

A B

D

C

78

Final, Fall 2011

E

Identify each statement with the best matching description on the right.

−−−− The frequency of A is strictly less than the fre-
quency of B.

−−−− The frequency of C is greater than or equal to
the frequency of A.

−−−− The frequency of D is strictly greater than the
frequency of A.

−−−− The frequency of D is greater than or equal to
that of A, B, and C combined.

−−−− The frequency of E is strictly less than that of
A, B, and C combined.

A. True for all messages.

B. False for all messages.

C. Depends on the message.

COS 226 FINAL, FALL 2011 13

(b) Decode each of the following LZW-encoded messages or explain briefly why it is not a
valid LZW-encoded message. (Recall that codeword 80 is reserved to signify end of file.)

encoded message decoded message or brief explanation of why invalid

41 42 43 44 80 A B C D

42 41 4E 82 41 80

42 41 83 80

41 42 81 82 80

41 42 81 83 80

42 41 4E 44 41 4E 41 80

For reference, below is the hexademical-to-ASCII conversion table from the textbook:

ASCII encoding. When you HexDump a bit-
stream that contains ASCII-encoded charac-
ters, the table at right is useful for reference.
Given a two digit hex number, use the first
hex digit as a row index and the second hex
digit as a column index to find the character
that it encodes. For example, 31 encodes the
digit 1, 4A encodes the letter J, and so forth.
This table is for 7-bit ASCII, so the first hex
digit must be 7 or less. Hex numbers starting
with 0 and 1 (and the numbers 20 and 7F)
correspond to non-printing control charac-
ters. Many of the control characters are left over from the days when physical devices
such as typewriters were controlled by ASCII input; the table highlights a few that you
might see in dumps. For example, SP is the space character, NUL is the null character, LF
is line feed, and CR is carriage return.

In summary, working with data compression requires us to reorient our thinking about
standard input and standard output to include binary encoding of data. BinaryStdIn
and BinaryStdOut provide the methods that we need. They provide a way for you to
make a clear distinction in your client programs between writing out information in-
tended for file storage and data transmission (that will be read by programs) and print-
ing information (that is likely to be read by humans).

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 SP ! " # $ % & ‘ () * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [\] ^ _

6 ` a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

Hexadecimal-to-ASCII conversion table

8155.5 � Data Compression

14 PRINCETON UNIVERSITY

11. Maximum flow. (8 points)

Consider the following st-flow network and feasible flow f .

Final, Fall 2011

2

4

3 6

s 5 t

1

3 / 6

4 / 4
10 / 10

7 /
11 0 / 15

4 / 5

13 / 16

16 /
16

10 / 18

0 / 7

17 / 17

2 / 6

14 / 16

22 / 22

10 / 10

flow capacity

(a) What is the value of the flow f?

(b) Perform one iteration of the Ford-Fulkerson algorithm, starting from the flow f . Give
the sequence of vertices on the augmenting path.

(c) What is the value of the maximum flow?

(d) List the vertices on the s side of the minimum cut.

(e) What is the capacity of the minimum cut?

COS 226 FINAL, FALL 2011 15

12. Algorithm design. (8 points)

Given an edge-weighted graph G and an edge e, design a linear-time algorithm to determine
whether e appears in an MST of G. For simplicity, assume that G is connected and that all
edge weights are distinct.

Note: Since your algorithm must take linear time in the worst case, you cannot afford to
compute the MST itself.

(a) Describe your algorithm in the space below.

(b) What is the order of growth of the running time of your algorithm in the worst case
as a function of the number of vertices V and the number of edges E? Circle the best
answer.

1 V E + V E log∗ V E logE EV 2V

13. Reductions. (8 points)

Consider the following two related problems:

• 3Sum. Given an integer array a[], are there three indices i, j, and k (not necessarily
distinct) such that a[i] + a[j] + a[k] == 0 ?

• 3SumVariant. Given two integer arrays b[] and c[], are there three indices i, j, and
k (not necessarily distinct) such that b[i] + b[j] == c[k] ?

(a) Show that 3Sum linear-time reduces to 3SumVariant. To demonstrate your reduction,
give the 3SumVariant instance that would be constructed to solve the following 3Sum
instance:

a[] -66 -30 70 99 -33 66 20 50

b[]

c[]

(b) Show that 3SumVariant linear-time reduces to 3Sum. To demonstrate your reduction,
give the 3Sum instance that would be constructed to solve the following 3SumVariant
instance:

b[] 299 700 10 14 -3 -1 20

c[] 999 19 -4 600 30 20

Hint: define M equal to 1 + maximum absolute value of any integer in b[] or c[].

a[]

16

