
Page 1 of 5

Princeton University
COS 217: Introduction to Programming Systems

Fall 2019 Final Exam Preparation

The exam is a three-hour, closed-book, closed-notes, closed-handouts exam. The exam is cumulative, but
emphasizes second-half material. During the exam you may not use a "cheat-sheet." During the exam you
may not use computers, calculators, or other electronic devices.

Topics

You are responsible for all material covered in lectures, precepts, assignments, and required readings. This
is a non-exhaustive list of topics that were covered. Topics that were not covered on the midterm exam are
in boldface.

1. Number Systems

Binary, octal, and hexadecimal
Finite unsigned integers, operations, and overflow
Finite two’s complement signed integers, operations, and overflow
Floating-point numbers

2. C Programming

From source to executable: preprocess, compile, assemble, link
Program structure: multi-file programs with header files
Process memory layout: text, stack, heap, rodata, data, bss sections
Primitive data types
Variable declarations and definitions
Variable scope, linkage, and duration/extent
Constants: #define, constant variables, enumerations
Operators
Statements
Function declarations and definitions
Pointers and arrays

Call-by-reference, arrays as parameters, strings
Command-line arguments

Input/output facilities for standard streams and files, and for text and binary data
getchar(), fgetc(), putchar(), fputc(), gets(), fgets(), puts(),
fputs(), scanf(), fscanf(), printf(), fprintf(), fopen(),
fclose(), fwrite(), putc()

Structures
Dynamic memory management

malloc(), calloc(), realloc(), free()
Common errors: dereference of dangling pointer, memory leak, double free

Abstract objects
Abstract data types; opaque pointers
Generic data structures and functions

Void pointers
Function pointers and function callbacks

Parameterized macros and their dangers (see King Section 14.3)

Page 2 of 5

3. Programming-in-the-Large

Modules and interfaces
Abstract data types and ADT design in C
Heuristics for effective modules: encapsulates data, manages resources, is consistent, has
a minimal interface, detects and handles/reports errors, establishes contracts, has strong
cohesion, has weak coupling

Program and programming style
Bottom-up design, top-down design, least-risk design

Building
Motivation for make, make fundamentals, non-file targets, macros

Testing
External testing with scripts
Internal testing with assertions: validating parameters and return values, checking
invariants, checking array subscripts, checking function values
Unit testing with scaffolds and stubs
Test coverage: statement, path, boundary

Debugging
General heuristics for debugging: understand error messages, think before writing, look
for familiar bugs, divide and conquer, add more internal tests, display output, use a
debugger, focus on recent changes
Heuristics for debugging dynamic memory management: look for common DMM bugs,
diagnose seg faults using gdb, manually inspect malloc() calls, comment-out free()
calls, use Meminfo, use Valgrind

Performance improvement

Should you optimize?
Performance improvement pros and cons, do timing studies

What should you optimize?
Use a performance profiler, e.g. gprof

Optimization techniques
Use a better algorithm or data structure, avoid repeated computation, inline
function calls, unroll loops, use a lower-level language

4. Under the Hood: Language Levels Tour

Language levels
High-level vs. assembly vs. machine language

Computer architecture
The Von Neumann architecture

RAM
CPU: control unit, ALU, registers

Big-endian vs. little-endian byte order
CISC vs. RISC architectures

ARMv8 computer architecture
General purpose registers: R0-R30

8-byte: X0-X30
4-byte: W0-W30

Special purpose registers: ZR, XZR, WZR; SP, WSP; PSTATE
ARMv8 assembly language

Label definitions
Directives
Instructions

Load instructions
Store instructions
Manipulation instructions

Page 3 of 5

Data copy, address generation, arithmetic, logical, shift, branch,
function call/return

Control flow
Unconditional branches
Conditional branches

Condition flags (N, C, Z, and V) in PSTATE register
Set by cmp instruction (and other instructions)
Examined by conditional branch instructions

Conditional branches with signed data
beq, bne, blt, ble, bgt, bge

Conditional branches with unsigned data
beq, bne, blo, bls, bhi, bhs

Memory operands
Register, immediate offset, register offset, scaled register offset

Data structures
Arrays
Structures

Padding
Local variables

The stack section and the SP register
ARMv8 function call conventions

Calling and returning
The bl instruction, the ret instructions, the X30 register

Passing arguments
Registers: R0-R7

Returning a value
Register: R0

Optimization
Caller-saved registers: R0-R7, R9-R15

Used for parameters and scratch
Caller must save, if it wants

Callee-saved registers: R19-R28
Used for local variables
Callee must save

ARMv8 machine language
ARMv8 instruction format
Machine language after assembly

DATA section, RODATA section, BSS section, TEXT section, relocation
records

Machine language after linking
Resolution: fetch library code
Relocation: use relocation records to patch code
Output: DATA section, RODATA section, BSS section, TEXT section

5. Under the Hood: Service Levels Tour

Exceptions and processes
Exceptions

Synchronous vs. asynchronous
Interrupts, traps, faults, and aborts

Traps and system-level functions in ARMv8
The process abstraction
The illusion of private address space

Reality: virtual memory via page faults
The illusion of private control flow

Reality: context switches during exception handling
Storage management

Page 4 of 5

Locality of reference and caching
Typical storage hierarchy: registers vs. cache vs. memory vs. local secondary
storage vs. remote secondary storage
Virtual memory

Implementation of virtual memory
Virtual addresses vs. physical addresses
Page tables, page faults

Benefits of virtual memory
Dynamic memory management (DMM)

The need for DMM
DMM using the heap section

The brk() and sbrk() system-level functions
Internal and external fragmentation
Minimal, pad, free-list, doubly-linked free list, bins implementations

DMM using virtual memory
The mmap() and munmap() system-level functions

Process management
Creating processes

The getpid() and fork() system-level function
Waiting for (reaping, harvesting) processes

The wait() system-level function
Executing new programs

The exec family of system-level functions
The system() function

I/O management
The file abstraction
Linux I/O

File descriptors, file descriptor tables, file tables
The creat(), open(), close(), read(), write() system-level
functions

Standard C I/O
Buffering
Implementing standard C I/O using Linux I/O
FILE* and functions

Redirecting standard files
The dup() and dup2() system-level functions

Pipes
The pipe() system-level function

 Signals and alarms
Sending signals

Via keystrokes, the kill command, and the raise() and kill() functions
Handling signals

The signal() function
The SIG_IGN and SIG_DFL arguments to signal()

Alarms
The alarm() function

6. Applications

De-commenting
Lexical analysis using finite state automata
String manipulation
Symbol tables, linked lists, hash tables
Dynamically expanding arrays
High-precision addition
Buffer overrun attacks

Page 5 of 5

Heap management
Linux shells

7. Tools: The Linux/GNU programming environment

Linux
bash
emacs
gcc
gdb for C
make
gprof
gdb for assembly language
objdump

Readings

As specified by the course Schedule Web page.

Required:

C Programming (King): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20.1, 22,
24.1, 24.2, 24.3
Computer Systems (Bryant & O'Hallaron): 1, 8.1-5, 9
ARM 64-bit Assembly Language (Pyeatt with Ughetta): 1, 2, 3, 4, 5, 6, 7
The C Programming Language (Kernighan & Ritchie) 8.7

Recommended:
Computer Systems (Bryant & O'Hallaron): 2, 5.1-5, 6, 7, 10
The Practice of Programming (Kernighan & Pike): 1, 2, 4, 5, 6, 7, 8
Unix Tutorial for Beginners (website)
GNU Emacs Tutorial (website)
Linux Pocket Guide (Barrett)
Deterministic Finite Automaton Wikipedia article (website)
GNU GDB Tutorial (website)
GNU Make Tutorial (website)
GNU Gprof Tutorial (website)

Recommended, for reference only:
ARMv8 Instruction Set Overview
ARMv8 Architecture Manual
Using As

Copyright © 2020

