Princeton University
COS 217: Introduction to Programming Systems
Pointer-Related Operators

Key

- **p, p1, p2**
 Pointer variables
- **i**
 An integral expression

Operators Meaningful for Any Pointer Variable

Dereference Operator

\[*p\]
The contents of the memory referenced by \(p\).

Equality and Inequality Relational Operators

\[p1 == p2\]
1 if \(p1\) is equal to \(p2\), and 0 otherwise.

\[p1 != p2\]
1 if \(p1\) is unequal to \(p2\), and 0 otherwise.

Assignment Operator

\[p1 = p2\]
Side effect: Assign \(p2\) to \(p1\). The new value of \(p1\).

Operators Meaningful for Pointers that Reference Array Elements

Arithmetic Operators

\[p + i\]
The address of the \(i\)th element after the one referenced by \(p\).

\[i + p\]
The address of the \(i\)th element after the one referenced by \(p\).

\[p - i\]
The address of the \(i\)th element before the one referenced by \(p\).

\[p++\]
Side effect: Increment \(p\) to point to the next element.
The previous value of \(p\).

\[++p\]
Side effect: Increment \(p\) to point to the next element.
The new value of \(p\).

\[p--\]
Side effect: Decrement \(p\) to point to the previous element.
The previous value of \(p\).

\[--p\]
Side effect: Decrement \(p\) to point to the previous element.
The new value of \(p\).

Arithmetic Operators

\[p1 - p2\]
The "span" of \(p1\) and \(p2\).

Relational Operators

\[p1 < p2\]
1 if \(p1\) is less than \(p2\), and 0 otherwise.

\[p1 <= p2\]
1 if \(p1\) is less than or equal to \(p2\), and 0 otherwise.

\[p1 > p2\]
1 if \(p1\) is greater than \(p2\), and 0 otherwise.

\[p1 >= p2\]
1 if \(p1\) is greater than or equal to \(p2\), and 0 otherwise.
Assignment Operators

\[p += i \quad \text{Side effect: Increment } p \text{ so its value is the address of the } i\text{th element after the one referenced by } p. \]
\[\text{The new value of } p. \]

\[p -= i \quad \text{Side effect: Decrement } p \text{ so its value is the address of the } i\text{th element before the one referenced by } p. \]
\[\text{The new value of } p. \]

Disallowed

\[p1 + p2 \]
\[i - p \]
\[i += p \]
\[i -= p \]
\[p == i \]

Array Subscripting Operator

\[p[i] \quad *(p + i), \text{ that is, the contents of memory at the address that is } i \text{ elements after the address referenced by } p. \]