
1

1

Dynamic Memory
Management

Princeton University
Computer Science 217: Introduction to Programming Systems

1

Review from Last Time

2

2

Standard C DMM Functions

Standard C DMM functions:

Collectively define a dynamic memory manager (DMMgr)

We’ll focus on malloc() and free()

And time and space efficiency! 3

void *malloc(size_t size);
void free(void *ptr);
void *calloc(size_t nmemb, size_t size);
void *realloc(void *ptr, size_t size);

3

The Heap Section of Memory

4

Supported by Unix/Linux, MS Windows, …

Heap start is stable
Program break points to end

At process start-up, heap start == program break
Can grow dynamically
Can shrink dynamically

Heap start Program break

Low
memory

High
memory

4

Internal Fragmentation

5

Internal fragmentation: waste within chunks

Generally
Program asks for n bytes
DMMgr provides chunk of size n+Δ bytes
Δ bytes wasted

Space efficiency =>
DMMgr should reduce internal fragmentation

100 bytes

Client asks for 90 bytes
DMMgr provides chunk of size 100 bytes
10 bytes wasted

5

External Fragmentation

6

External fragmentation: waste because of
non-contiguous chunks

Generally
Program asks for n bytes
n bytes are available, but not contiguously
DMMgr must extend size of heap to satisfy request

Space efficiency =>
DMMgr should reduce external fragmentation

100 bytes

Client asks for 150 bytes
150 bytes are available, but not contiguously
DMMgr must extend size of heap

50 bytes

6

2

List Impl: Baseline for Asgt 6
Data structures

Algorithms (by examples)… 7

Free list contains all free chunks
In order by mem addr

Each chunk contains header & payload
Payload is used by client
Header contains chunk size & (if free) addr of next chunk in free list

size

header

chunk

Next chunk in free list

payload

Free list

7

List Impl: malloc(n) Example 1

8

Search list for big-enough chunk
Note: first-fit (not best-fit) strategy

Found & reasonable size =>
Remove from list and return payload

< n >= n

too small reasonable

Free list

< n >= n

return this

Free list

8

List Impl: malloc(n) Example 2

9

Search list for big-enough chunk
Found & too big =>

Split chunk, return payload of tail end
Note: Need not change links

< n >> n

too small too big

Free list

< n n

return this

Free list

9

List Impl: free(p) Example

10

Search list for proper insertion spot
Insert chunk into list
(Not finished yet!)

free this

Free list

Free list

10

List Impl: free(p) Example (cont.)

11

Look at current chunk
Next chunk in memory == next chunk in list =>

Remove both chunks from list
Coalesce
Insert chunk into list

(Not finished yet!)

current
chunk

Free list

Free list

next chunk
In list

coalesced chunk

11

List Impl: free(p) Example (cont.)

12

Look at prev chunk in list
Next in memory == next in list =>

Remove both chunks from list
Coalesce
Insert chunk into list

(Finished!)

prev chunk
in list

Free list

Free list

current chunk

coalesced chunk

12

3

List Impl: malloc(n) Example 3

13

Search list for big-enough chunk
None found =>

Call brk() to increase heap size
Insert new chunk at end of list

(Not finished yet!)

too small too small

Free list

≥ n

new large
chunk

Free list
too small

13

List Impl: malloc(n) Example 3 (cont.)

14

Look at prev chunk in list
Next chunk memory == next chunk in list =>

Remove both chunks from list
Coalesce
Insert chunk into list

Then proceed to use the new chunk, as before
(Finished!)

prev chunk
In list

≥ n

new large
chunk

Free list

≥ n

new large
chunk

Free list

14

List Impl Performance
Space

• Some internal & external fragmentation is unavoidable
• Headers are overhead
• Overall: good

Time: malloc()
• Must search free list for big-enough chunk
• Bad: O(n)
• But often acceptable

Time: free()
• Must search free list for insertion spot
• Bad: O(n)
• Often very bad

15

15

Agenda
DMMgr 4: Doubly-linked list implementation

DMMgr 5: Bins implementation

DMM using virtual memory

DMMgr 6: VM implementation

16

16

Doubly-Linked List Impl
Data structures

17

Free list is doubly-linked
Each chunk contains header, payload, footer
Payload is used by client
Header contains status bit, chunk size, & (if free) addr of next chunk in list
Footer contains redundant chunk size & (if free) addr of prev chunk in list
Free list is unordered

1
size

header

chunk

Next chunk in free list

payload

size

Prev chunk in free list

footer

Status bit:
0 => free
1 => in use

17

Doubly-Linked List Impl

Typical heap during program execution:

18

Free list

18

4

Doubly-Linked List Impl
Algorithms (see precepts for more precision)

malloc(n)
• Search free list for big-enough chunk
• Chunk found & reasonable size => remove, set status, use
• Chunk found & too big => remove, split, insert tail, set status,

use front
• Chunk not found => increase heap size, create new chunk, insert
• New chunk reasonable size => remove, set status, use
• New chunk too big => remove, split, insert tail, set status, use front

19

19

Doubly-Linked List Impl

Algorithms (see precepts for more precision)

free(p)
• Set status
• Search free list for proper insertion spot
• Insert chunk into free list
• Next chunk in memory also free => remove both, coalesce, insert
• Prev chunk in memory free => remove both, coalesce, insert

20

20

Doubly-Linked List Impl Performance
Consider sub-algorithms of free()…

Insert chunk into free list
• Linked list version: slow

• Traverse list to find proper spot
• Doubly-linked list version: fast

• Insert at front!

Remove chunk from free list
• Linked list version: slow

• Traverse list to find prev chunk in list
• Doubly-linked list version: fast

• Use backward pointer of current chunk to find prev chunk in list

21

21

Doubly-Linked List Impl Performance
Consider sub-algorithms of free()…

Determine if next chunk in memory is free
• Linked list version: slow

• Traverse free list to see if next chunk in memory is in list
• Doubly-linked list version: fast

22

current next

Use current chunk’s size to find next chunk
Examine status bit in next chunk’s header

Free list

22

Doubly-Linked List Impl Performance
Consider sub-algorithms of free()…

Determine if prev chunk in memory is free
• Linked list version: slow

• Traverse free list to see if prev chunk in memory is in list
• Doubly-linked list version: fast

23

currentprev

Fetch prev chunk’s size from its footer
Do ptr arith to find prev chunk’s header
Examine status bit in prev chunk’s header

Free list

23

Doubly-Linked List Impl Performance

Observation:
• All sub-algorithms of free() are fast
• free() is fast!

24

24

5

Doubly-Linked List Impl Performance
Space

• Some internal & external fragmentation is unavoidable
• Headers & footers are overhead
• Overall: Good

Time: free()
• All steps are fast
• Good: O(1)

Time: malloc()
• Must search free list for big-enough chunk
• Bad: O(n)
• Often acceptable
• Subject to bad worst-case behavior

• E.g. long free list with big chunks at end

25

25

What’s Wrong?

Problem
• malloc() must traverse doubly-linked list, so can be slow

Solution
• Use multiple doubly-linked lists (bins)…

26

26

Agenda
DMMgr 4: Doubly-linked list implementation

DMMgr 5: Bins implementation

DMM using virtual memory

DMMgr 6: VM implementation

27

27

Data structures

Bins Impl

28

Use an array; each element is a bin
Each bin is a doubly-linked list of free chunks

As in previous implementation
bin[i] contains free chunks of size i

Exception: Final bin contains chunks of size MAX_BIN or larger

(More elaborate binning schemes are common)

Doubly-linked list containing free chunks of size 10

…

…

Doubly-linked list containing free chunks of size 11

Doubly-linked list containing free chunks of size 12

10

11

12

MAX_BIN Doubly-linked list containing free chunks of size >= MAX_BIN

…

28

Bins Impl
Algorithms (see precepts for more precision)

malloc(n)
• Search free list proper bin(s) for big-enough chunk
• Chunk found & reasonable size => remove, set status, use
• Chunk found & too big => remove, split, insert tail, set status, use

front
• Chunk not found => increase heap size, create new chunk
• New chunk reasonable size => remove, set status, use
• New chunk too big => remove, split, insert tail, set status, use front

free(p)
• Set status
• Insert chunk into free list proper bin
• Next chunk in memory also free => remove both, coalesce, insert
• Prev chunk in memory free => remove both, coalesce, insert

29

29

Bins Impl Performance
Space

• Pro: For small chunks, uses best-fit (not first-fit) strategy
• Could decrease external fragmentation and splitting

• Con: Some internal & external fragmentation is unavoidable
• Con: Headers, footers, bin array are overhead
• Overall: good

Time: malloc()
• Pro: Binning limits list searching

• Search for chunk of size i begins at bin i and proceeds downward
• Con: Could be bad for large chunks (i.e. those in final bin)

• Performance degrades to that of list version
• Overall: good O(1)

Time: free()
• ???

30

30

6

iClicker Question
Q: How fast is free() in the Bins implementation?

A. O(1), always with a small constant

B. O(1), usually but not always with a small constant

C. O(1), often with a large constant

D. Even worse than that…

31

Bins Impl Performance
Space

• Pro: For small chunks, uses best-fit (not first-fit) strategy
• Could decrease external fragmentation and splitting

• Con: Some internal & external fragmentation is unavoidable
• Con: Headers, footers, bin array are overhead
• Overall: good

Time: malloc()
• Pro: Binning limits list searching

• Search for chunk of size i begins at bin i and proceeds downward
• Con: Could be bad for large chunks (i.e. those in final bin)

• Performance degrades to that of list version
• Overall: good O(1)

Time: free()
• Good: O(1) with a small constant

32

32

DMMgr Impl Summary (so far)

Implementation Space Time
(1) Minimal Bad Malloc: Bad

Free: Good
(2) Pad Bad Malloc: Good

Free: Good
(3) List Good Malloc: Bad (but could be OK)

Free: Bad
(4) Doubly-Linked List Good Malloc: Bad (but could be OK)

Free: Good
(5) Bins Good Malloc: Good

Free: Good

33

Assignment 6: Given (3), compose (4) and (5)

33

34

What’s Wrong?
Observations

• Heap mgr might want to free memory chunks by unmapping them
rather than marking them
• Minimizes virtual page count

• Heap mgr can call brk(pBrk–n) to decrease heap size
• And thereby unmap heap memory

• But often memory to be unmapped is not at high end of heap!

Problem
• How can heap mgr unmap memory effectively?

Solution
• Don’t use the heap!

34

35

What’s Wrong?
Reprising a previous slide…

Question:
• How to implement malloc() and free()?
• How to implement a DMMgr?

Answer 1:
• Use the heap section of memory

Answer 2:
• Make use of virtual memory concept…

35

Agenda
DMMgr 4: Doubly-linked list implementation

DMMgr 5: Bins implementation

DMM using virtual memory

DMMgr 6: VM implementation

36

36

7

Unix VM Mapping Functions
Unix allows application programs to map/unmap VM

explicitly
void *mmap(void *p, size_t n, int prot, int flags,
int fd, off_t offset);

• Creates a new mapping in the virtual address space of the calling
process

• p: the starting address for the new mapping
• n: the length of the mapping
• If p is NULL, then the kernel chooses the address at which to create

the mapping; this is the most portable method of creating a new
mapping

• On success, returns address of the mapped area
int munmap(void *p, size_t n);

• Deletes the mappings for the specified address range

37

37

38

Unix VM Mapping Functions
Typical call of mmap() for allocating memory

p = mmap(NULL, n, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANON, 0, 0);

• Asks OS to map a new read/write area of virtual memory containing
n bytes

• Returns the virtual address of the new area on success, (void*)-1
on failure

Typical call of munmap()
status = munmap(p, n);
• Unmaps the area of virtual memory at virtual address p consisting of
n bytes

• Returns 0 on success, -1 on failure

See Bryant & O’Hallaron book and man pages for details

38

Agenda
DMMgr 4: Doubly-linked list implementation

DMMgr 5: Bins implementation

DMM using virtual memory

DMMgr 6: VM implementation

39

39

VM Mapping Impl
Data structures

40

size

header

chunk

payload

Each chunk consists of a header and payload
Each header contains size

40

VM Mapping Impl
Algorithms

41

void *malloc(size_t n)

{ size_t *ps;

if (n == 0) return NULL;

ps = mmap(NULL, n + sizeof(size_t), PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_ANONYMOUS, 0, 0);

if (ps == (size_t*)-1) return NULL;

ps = n + sizeof(size_t); / Store size in header */

ps++; /* Move forward from header to payload */

return (void*)ps;

}

void free(void *p)

{ size_t ps = (size_t*)p;

if (ps == NULL) return;

ps--; /* Move backward from payload to header */

munmap(ps, *ps);

}

41

VM Mapping Impl Performance
Space

• Fragmentation problem is delegated to OS
• Overall: Depends on OS

Time
• For small chunks

• One system call (mmap()) per call of malloc()
• One system call (munmap()) per call of free()
• Overall: poor

• For large chunks
• free() unmaps (large) chunks of memory, and so shrinks

page table
• Overall: maybe good!

42

42

8

The GNU Implementation
Observation

• malloc() and free() on ArmLab are from the
GNU (the GNU Software Foundation)

Question
• How are GNU malloc() and free() implemented?

Answer
• For small chunks

• Use heap (sbrk() and brk())
• Use bins implementation

• For large chunks
• Use VM directly (mmap() and munmap())

43

43

Summary
The need for DMM

• Unknown object size

DMM using the heap section
• On Unix: sbrk() and brk()
• Complicated data structures and algorithms
• Good for managing small memory chunks

DMM using virtual memory
• On Unix: mmap() and munmap()
• Good for managing large memory chunks

See Appendix for additional approaches/refinements

44

44

iClicker Question
Q: When is coalescing most useful?

A. Always

B. When most of the program’s objects are the same size

C. When the program simultaneously uses objects of
different sizes

D. When the program allocates many objects of size A, then
frees most of them, then allocates many objects of size B

E. Never

45

Appendix: Additional Approaches

Some additional approaches to dynamic memory mgmt…

46

46

Using payload space for management
or, only free chunks need to be in the free-list

47

1

size

header

Next chunk in free list

payload

size

Prev chunk in free list

footer

Status

1
size

header payload

size

footer

Status

0
size

header

Next chunk in free list

payload

size

Prev chunk in free list

footer

Status

This trick is NOT part of assignment 6!

47

Another use for the extra size field: error checking

48

1
size

header payload

size

footer

Status

char *s = (char *)malloc(32);
. . .
strcpy(s, "The rain in Spain is mainly in the plain.");
. . .
printf("%s\n", s);
free(s);

The rain in Spain is mainly in the plain

48

9

Selective Splitting

Observation
• In previous implementations, malloc() splits whenever chosen

chunk is too big

Alternative: selective splitting
• Split only when remainder is above some threshold

Pro
• Reduces external fragmentation

Con
• Increases internal fragmentation

49

In
use

In
use

49

Deferred Coalescing

Observation
• Previous implementations do coalescing whenever possible

Alternative: deferred coalescing
• Wait, and coalesce many chunks at a later time

Pro
• Handles malloc(n);free();malloc(n) sequences well

Con
• Complicates algorithms

50

In
use

In
use

50

51

Segregated Data

Observation
• Splitting and coalescing consume lots of overhead

Problem
• How to eliminate that overhead?

Solution: segregated data
• Make use of the virtual memory concept…
• Use bins
• Store each bin’s chunks in a distinct (segregated) virtual memory

page
• Elaboration…

51

52

Segregated Data

Segregated data
• Each bin contains chunks of fixed sizes

• E.g. 32, 64, 128, …
• All chunks within a bin are from same virtual memory page
• malloc() never splits! Examples:

• malloc(32) => provide 32
• malloc(5) => provide 32
• malloc(100) => provide 128

• free() never coalesces!
• Free block => examine address, infer virtual memory page,

infer bin, insert into that bin

52

Segregated Data

Pros
• Eliminates splitting and coalescing overhead
• Eliminates most meta-data; only forward links required

• No backward links, sizes, status bits, footers

Con
• Some usage patterns cause excessive external fragmentation

• E.g. Only one malloc(32) wastes all but 32 bytes of one
virtual page

53

53

54

Segregated Meta-Data
Observations

• Meta-data (chunk sizes, status flags, links, etc.) are scattered across
the heap, interspersed with user data

• Heap mgr often must traverse meta-data

Problem 1
• User error easily can corrupt meta-data

Problem 2
• Frequent traversal of meta-data can cause excessive page faults

(poor locality)

Solution: segregated meta-data
• Make use of the virtual memory concept…
• Store meta-data in a distinct (segregated) virtual memory page from

user data

54

10

Segregated metadata

55

2

4

6

Data layout: no “size” field, no header at all!

Malloc: look up in bins array, use first element of linked list

Free: find size (somehow), put back at head of that bin’s list

1 megabyte, contiguous

55

How free() finds the size

56

↓006FA8B0000 ↓006FA8BFFFF

↓00381940000 ↓0038194FFFF

Hash table:
006FA8B → 2
0038194 → 4
0058217 → 6
etc.

006FA8B0080

“page” number offset in page

2

4

6

56

Segregated metadata performance
Space

• No overhead for header: very very good,
• No coalescing, fragmentation may occur, possibly bad

Time
• malloc: very very good, O(1)
• free: hash-table lookup, good, O(1)

57

57

Trade-off

Bins+DLL+coalescing
TIME:

J fast malloc

J fast free

SPACE:

L 32 bytes overhead per object

J coalescing, might reduce
fragmentation

Segregated metadata
TIME:

J very fast malloc

J fast free

SPACE:

J 0 bytes overhead per object

L no coalescing

58

There’s no “one best memory allocator”

16, if payload overlapped with header

58

