Assembly Language:
Function Calls
Goals of this Lecture

Help you learn:

• Function call problems
• AARCH64 solutions
 • Pertinent instructions and conventions
Function Call Problems

(1) Calling and returning
 • How does caller function jump to callee function?
 • How does callee function jump back to the right place in caller function?

(2) Passing arguments
 • How does caller function pass arguments to callee function?

(3) Storing local variables
 • Where does callee function store its local variables?

(4) Returning a value
 • How does callee function send return value back to caller function?
 • How does caller function access the return value?

(5) Optimization
 • How do caller and callee function minimize memory access?
Running Example

Calls standard C `labs()` function
 • Returns absolute value of given long

```c
long absadd(long a, long b)
{
    long absA, absB, sum;
    absA = labs(a);
    absB = labs(b);
    sum = absA + absB;
    return sum;
}
```
Agenda

Calling and returning

Passing arguments
Storing local variables
Returning a value
Optimization
Problem 1: Calling and Returning

How does caller \textit{jump} to callee?
• i.e., Jump to the address of the callee’s first instruction

How does the callee \textit{jump back} to the right place in caller?
• i.e., Jump to the instruction immediately following the most-recently-executed call instruction

```c
... absadd(3L, -4L);
... long absadd(long a, long b)
{
    long absA, absB, sum;
    absA = labs(a);
    absB = labs(b);
    sum = absA + absB;
    return sum;
}
```
Attempted Solution: \texttt{b} Instruction

Attempted solution: caller and callee use \texttt{b} (unconditional branch) instruction

\begin{align*}
f: & \quad \ldots \\
 & \quad \texttt{b g} \quad \# \text{Call g} \\
\text{fReturnPoint:} & \quad \ldots \\
\end{align*}

\begin{align*}
g: & \quad \ldots \\
 & \quad \texttt{b fReturnPoint} \quad \# \text{Return} \\
\end{align*}
Problem: callee may be called by multiple callers

f1:

...
 b g # Call g
f1ReturnPoint:

...
g:

...
 b ??? # Return

f2:

...
 b g # Call g
f2ReturnPoint:

...
Partial Solution: Use Register

bl (branch and link) instruction stores return point in X30
ret (return) instruction returns to address in X30

```
bl g     # Call g  
```

```
f1:  
    bl g     # Call g  
  f1ReturnPoint:  
      ...
```

```
 Ret  # Return
```

```
f2:  
    bl g     # Call g  
  f2ReturnPoint:  
      ...
```

Correctly returns to either f1 or f2
Partial Solution: Use Register

Problem: Cannot handle nested function calls

Problem if $\text{f}()$ calls $\text{g}()$, and $\text{g}()$ calls $\text{h}()$

Return address $\text{g}() \rightarrow \text{f}()$ is lost
Rest of Solution: Use the Stack

Observations:

- May need to store many return addresses
 - The number of nested function calls is not known in advance
 - A return address must be saved for as long as the invocation of this function is live, and discarded thereafter
- Stored return addresses are destroyed in reverse order of creation
 - \texttt{f()} calls \texttt{g()} ⇒ return addr for \texttt{g} is stored
 - \texttt{g()} calls \texttt{h()} ⇒ return addr for \texttt{h} is stored
 - \texttt{h()} returns to \texttt{g()} ⇒ return addr for \texttt{h} is destroyed
 - \texttt{g()} returns to \texttt{f()} ⇒ return addr for \texttt{g} is destroyed
- LIFO data structure (stack) is appropriate

AARCH64 solution:

- Use the STACK section of memory, usually accessed via SP
Push X30 on stack when entering a function
Pop X30 from stack before returning from a function

f:
 // Save X30
 ...
 bl g # Call g
 ...
 // Restore X30
 ret

g:
 // Save X30
 ...
 bl h # Call h
 ...
 // Restore X30
 ret

h:
 ...
 ret
Stack Operations

SP (stack pointer) register points to *top* of stack

- Can be used in `ldr` and `str` instructions
- Can be used in arithmetic instructions
- AARCH64 requirement: must be multiple of 16
Stack Operations

To create a new *stack frame*:

- Decrement sp

  ```
  sub sp, sp, 16
  ```
To use the *stack frame*:

- Load/store *at* or *offset from* sp

 str x30, [sp]
 ...
 ldr x30, [sp]
To delete the *stack frame*:

- Increment \(sp \)

  ```
  add sp, sp, 16
  ```
Saving Link (Return) Addresses

Push X30 on stack when entering a function
Pop X30 from stack before returning from a function

f:

// Save X30
sub sp, sp, 16
str x30, [sp]
...
bl g # Call g
...
// Restore X30
ldr x30, [sp]
add sp, sp, 16
ret

g:

// Save X30
sub sp, sp, 16
str x30, [sp]
...
bl h # Call h
...
// Restore X30
ldr x30, [sp]
add sp, sp, 16
ret

h:

...
ret
// long absadd(long a, long b)
absadd:
 sub sp, sp, 16
 str x30, [sp]
 // long absA, absB, sum
 ...
 // absA = labs(a)
 ...
 bl labs
 ...
 // absB = labs(b)
 ...
 bl labs
 ...
 // sum = absA + absB
 ...
 // return sum
 ...
 ldr x30, [sp]
 add sp, sp, 16
 ret
Agenda

- Calling and returning
- Passing arguments
- Storing local variables
- Returning a value
- Optimization
Problem 2: Passing Arguments

Problem:
• How does caller pass arguments to callee?
• How does callee accept parameters from caller?

```c
long absadd(long a, long b)
{
    long absA, absB, sum;
    absA = labs(a);
    absB = labs(b);
    sum = absA + absB;
    return sum;
}
```
ARM Solution 1: Use the Stack

Observations (déjà vu):

- May need to store many arg sets
 - The number of arg sets is not known in advance
 - If this function calls any others, arg set must be saved for as long as the invocation of this function is live, and discarded thereafter
- Stored arg sets are destroyed in reverse order of creation
- LIFO data structure (stack) is appropriate
ARM Solution 2: Use Registers

AARCH64 solution:

- Pass first 8 (integer or address) arguments in registers for efficiency
 - X0..X7 and/or W0..W7
- More than 8 arguments →
 - Pass arguments 9, 10, … on the stack
 - (Beyond scope of COS 217)
- Arguments are structures →
 - Pass arguments on the stack
 - (Beyond scope of COS 217)

Callee function then saves arguments to stack

- Or maybe not!
 - See “optimization” later this lecture
- Callee accesses arguments as positive offsets vs. SP
Running Example

// long absadd(long a, long b)
absadd:
 sub sp, sp, 32
 str x30, [sp] // Save x30
 str x0, [sp, 16] // Save a
 str x1, [sp, 8] // Save b
 // long absA, absB, sum

... // absA = labs(a)
 ldr x0, [sp, 16] // Load a
 bl labs

... // absB = labs(b)
 ldr x0, [sp, 8] // Load b
 bl labs

... // sum = absA + absB

... // return sum

... ldr x30, [sp] // Restore x30
 add sp, sp, 32
 ret
Agenda

Calling and returning
Passing arguments
Storing local variables
Returning a value
Optimization
Problem 3: Storing Local Variables

Where does callee function store its local variables?

```c
long absadd(long a, long b) {
    long absA, absB, sum;
    absA = labs(a);
    absB = labs(b);
    sum = absA + absB;
    return sum;
}
```
ARM Solution: Use the Stack

Observations (déjà vu again!):
- May need to store many local var sets
 - The number of local var sets is not known in advance
 - Local var set must be saved for as long as the invocation of this function is live, and discarded thereafter
- Stored local var sets are destroyed in reverse order of creation
- LIFO data structure (stack) is appropriate

AARCH64 solution:
- Use the STACK section of memory
- Or maybe not!
 - See later this lecture
// long absadd(long a, long b)

absadd:
 // long absA, absB, sum
 sub sp, sp, 48
 str x30, [sp] // Save x30
 str x0, [sp, 16] // Save a
 str x1, [sp, 8] // Save b
 // absA = labs(a)
 ldr x0, [sp, 16] // Load a
 bl labs
 ...
 // absB = labs(b)
 ldr x0, [sp, 8] // Load b
 bl labs
 ...
 // sum = absA + absB
 ldr x0, [sp, 40] // Load absA
 ldr x1, [sp, 32] // Load absB
 add x0, x0, x1
 str x0, [sp, 24] // Store sum
 // return sum
 ...
 ldr x30, [sp] // Restore x30
 add sp, sp, 48
 ret
Agenda

- Calling and returning
- Passing arguments
- Storing local variables
- Returning a value
- Optimization
Problem 4: Return Values

Problem:
• How does callee function send return value back to caller function?
• How does caller function access return value?

```c
long absadd(long a, long b)
{
    long absA, absB, sum;
    absA = labs(a);
    absB = labs(b);
    sum = absA + absB;
    return sum;
}
```
ARM Solution: Use X0 / W0

In principle
• Store return value in stack frame of caller

Or, for efficiency
• Known small size ⇒ store return value in register
• Other ⇒ store return value in stack

AARCH64 convention
• Integer or address:
 • Store return value in X0 / W0
• Floating-point number:
 • Store return value in floating-point register
 • (Beyond scope of COS 217)
• Structure:
 • Store return value in memory pointed to by X8
 • (Beyond scope of COS 217)
// long absadd(long a, long b)
absadd:
 // long absA, absB, sum
 sub sp, sp, 48
 str x30, [sp] // Save x30
 str x0, [sp, 16] // Save a
 str x1, [sp, 8] // Save b
 // absA = labs(a)
 ldr x0, [sp, 16] // Load a
 bl labs
 str x0, [sp, 40] // Store absA
 // absB = labs(b)
 ldr x0, [sp, 8] // Load b
 bl labs
 str x0, [sp, 32] // Store absB
 // sum = absA + absB
 ldr x0, [sp, 40] // Load absA
 ldr x1, [sp, 32] // Load absB
 add x0, x0, x1
 str x0, [sp, 24] // Store sum
 // return sum
 ldr x0, [sp, 24] // Load sum
 ldr x30, [sp] // Restore x30
 add sp, sp, 48
 ret
Agenda

- Calling and returning
- Passing arguments
- Storing local variables
- Returning a value
- Optimization
Problem 5: Optimization

Observation: Accessing memory is expensive
 • More expensive than accessing registers
 • For efficiency, want to store parameters and local variables in registers (and not in memory) when possible

Observation: Registers are a finite resource
 • In principle: Each function should have its own registers
 • In reality: All functions share same small set of registers

Problem: How do caller and callee use same set of registers without interference?
 • Callee may use register that the caller also is using
 • When callee returns control to caller, old register contents may have been lost
 • Caller function cannot continue where it left off
ARM Solution: Register Conventions

Callee-save registers
- X19..X29 (or W19..W29)
- Callee function **must preserve** contents
- If necessary…
 - Callee saves to stack near beginning
 - Callee restores from stack near end

Caller-save registers
- X8..X18 (or W8..W18) – plus parameters in X0..X7
- Callee function **can change** contents
- If necessary…
 - Caller saves to stack before call
 - Caller restores from stack after call
Running Example

Parameter handling in *unoptimized* version:

- `absadd()` accepts parameters (\(a\) and \(b\)) in X0 and X1
- At beginning, `absadd()` copies contents of X0 and X1 to stack
- Body of `absadd()` uses stack
- At end, `absadd()` pops parameters from stack

Parameter handling in *optimized* version:

- `absadd()` accepts parameters (\(a\) and \(b\)) in X0 and X1
- At beginning, copies contents of X0 and X1 to X19 and X20
- Body of `absadd()` uses X19 and X20
- Must be careful:
 - `absadd()` cannot change contents of X19 and X20
 - So `absadd()` must save X19 and X20 near beginning, and restore near end
Running Example

Local variable handling in *unoptimized* version:
- At beginning, `absadd()` allocates space for local variables (`absA`, `absB`, `sum`) on stack
- Body of `absadd()` uses stack
- At end, `absadd()` pops local variables from stack

Local variable handling in *optimized* version:
- `absadd()` keeps local variables in X21, X22, X23
- Body of `absadd()` uses X21, X22, X23
- Must be careful:
 - `absadd()` cannot change contents of X21, X22, or X23
 - So `absadd()` must save X21, X22, and X23 near beginning, and restore near end
Running Example

```c
// long absadd(long a, long b)
absadd:
    // long absA, absB, sum
    sub sp, sp, 48
    str x30, [sp]      // Save x30
    str x19, [sp, 8]   // Save x19, use for a
    str x20, [sp, 16]  // Save x20, use for b
    str x21, [sp, 24]  // Save x21, use for absA
    str x22, [sp, 32]  // Save x22, use for absB
    str x23, [sp, 40]  // Save x23, use for sum
    mov x19, x0        // Store a in x19
    mov x20, x1        // Store b in x20
    // absA = labs(a)
    mov x0, x19        // Load a
    bl labs
    mov x21, x0        // Save absA
    // absB = labs(b)
    mov x0, x20        // Load b
    bl labs
    mov x22, x0        // Store absB
    // sum = absA + absB
    add x23, x21, x22  // return sum
    mov x0, x23        // Load sum
    ldr x30, [sp]      // Restore x30
    ldr x19, [sp, 8]   // Restore x19
    ldr x20, [sp, 16]  // Restore x20
    ldr x21, [sp, 24]  // Restore x21
    ldr x22, [sp, 32]  // Restore x22
    ldr x23, [sp, 40]  // Restore x22
    add sp, sp, 48
    ret
```

absadd() stores parameters and local vars in X19..X23, not in memory

absadd() cannot destroy contents of X19..X23

So absadd() must save X19..X23 near beginning and restore near end
Eliminating Redundant Copies

Further optimization: remove redundant moves between registers

- “Hybrid” pattern that uses both caller- and callee-saved registers
- Can be confusing: no longer systematic mapping between variables and registers
- Attempt only after you have working code!
- Save working versions for easy comparison!

// long absadd(long a, long b)
absadd:
 // long absA, absB, sum
 sub sp, sp, 32
 str x30, [sp] // Save x30
 str x19, [sp, 8] // Save x19, use for b
 str x20, [sp, 16] // Save x20, use for absA
 mov x19, x1 // Store b in x19
 // absA = labs(a)
 bl labs // a already in x0
 mov x20, x0 // Save absA
 // absB = labs(b)
 mov x0, x19 // Load b
 bl labs
 // sum = absA + absB
 add x0, x20, x0 // x0 held absB, now holds sum
 // return sum = already in x0
 ldr x30, [sp] // Restore x30
 ldr x19, [sp, 8] // Restore x19
 ldr x20, [sp, 16] // Restore x20
 add sp, sp, 32
 ret
Non-Optimized vs. Optimized Patterns

Unoptimized pattern
- Parameters and local variables strictly in memory (stack) during function execution
- **Pro**: Always possible
- **Con**: Inefficient
- gcc compiler uses when invoked *without* –O option

Optimized pattern
- Parameters and local variables mostly in registers during function execution
- **Pro**: Efficient
- **Con**: Sometimes impossible
 - Too many local variables
 - Local variable is a structure or array
 - Function computes address of parameter or local variable
- gcc compiler uses when invoked *with* –O option, when it can!
Problem

- Hardcoded sizes, offsets, registers are difficult to read, understand, debug
Writing Readable Code

// Stack frame size in bytes
.equ STACKSIZE, 48

// Registers for parameters
a .req x19
b .req x20

// Registers for local variables
absA .req x21
absB .req x22
sum .req x23

// long absadd(long a, long b)
absadd:
 // long absA, absB, sum
 sub sp, sp, STACKSIZE
 str x30, [sp] // Save x30
 str x19, [sp, 8] // Save x19
 str x20, [sp, 16] // Save x20
 str x21, [sp, 24] // Save x21
 str x22, [sp, 32] // Save x22
 str x23, [sp, 40] // Save x23
 mov a, x0 // Store a in x19
 mov b, x1 // Store b in x20
 ...

Problem

• Hardcoded sizes, offsets, registers are difficult to read, understand, debug

Using .equ and .req

• To define a symbolic name for a constant:
 .equ SOMENAME, nnn

• To define a symbolic name for a register (e.g. what variable it holds):
 SOMENAME .req Xnn
Writing Readable Code

Problem

- Hardcoded sizes, offsets, registers are difficult to read, understand, debug

Using .equ and .req

- To define a symbolic name for a constant:
 .equ SOMENAME, nnn

- To define a symbolic name for a register (e.g. what variable it holds):
 SOMENAME .req Xnn

```assembly
... // absA = labs(a)
mov x0, a
bl labs
mov absA, x0
  // absB = labs(b)
mov x0, b
bl labs
mov absB, x0
  // sum = absA + absB
add sum, absA, absB
  // return sum
mov x0, sum
  ldr x30, [sp]  // Restore x30
  ldr x19, [sp, 8]  // Restore x19
  ldr x20, [sp, 16]  // Restore x20
  ldr x21, [sp, 24]  // Restore x21
  ldr x22, [sp, 32]  // Restore x22
  ldr x23, [sp, 40]  // Restore x23
add sp, sp, STACKSIZE
ret
```
Function calls in AARCH64 assembly language

Calling and returning
- \texttt{bl} instruction saves return address in X30 and jumps
- \texttt{ret} instruction jumps back to address in X30

Passing arguments
- Caller copies args to caller-saved registers (in prescribed order)
- Unoptimized pattern:
 - Callee pushes args to stack
 - Callee uses args as positive offsets from SP
 - Callee pops args from stack
- Optimized pattern:
 - Callee keeps args in caller-saved registers
 - Be careful!
Summary (cont.)

Storing local variables
- Unoptimized pattern:
 - Callee pushes local vars onto stack
 - Callee uses local vars as positive offsets from SP
 - Callee pops local vars from stack
- Optimized pattern:
 - Callee keeps local vars in callee-saved registers

Returning values
- Callee places return value in X0
- Caller accesses return value in X0