
1

Performance
Improvement

Princeton University
Computer Science 217: Introduction to Programming Systems

“Premature optimization is the root of all evil.”

-- Donald Knuth

“Rules of Optimization:
• Rule 1: Don't do it.
• Rule 2 (for experts only): Don't do it yet.”

-- Michael A. Jackson

“Programming in the Large”
Design & Implement

• Program & programming style (done)
• Common data structures and algorithms (done)
• Modularity (done)
• Building techniques & tools (done)

Debug
• Debugging techniques & tools (done)

Test
• Testing techniques (done)

Maintain
• Performance improvement techniques & tools ¬ we are here

2

3

Goals of this Lecture

Help you learn about:
• How to use profilers to identify code hot-spots
• How to make your programs run faster

Why?
• In a large program, typically a small fragment of the code consumes

most of the CPU time
• A power programmer knows how to identify such code fragments
• A power programmer knows techniques for improving the

performance of such code fragments

Agenda

Should you optimize?

What should you optimize?

Optimization techniques

4

5

Performance Improvement Pros

Techniques described in this lecture can answer:
• How slow is my program?
• Where is my program slow?
• Why is my program slow?
• How can I make my program run faster?
• How can I make my program use less memory?

6

Performance Improvement Cons

Techniques described in this lecture can yield code that:
• Is less clear/maintainable
• Might confuse debuggers
• Might contain bugs

• Requires regression testing

So…

7

When to Improve Performance

“The first principle of optimization is

don’t.
Is the program good enough already?
Knowing how a program will be used

and the environment it runs in,
is there any benefit to making it faster?”

-- Kernighan & Pike

8

Timing a Program
Run a tool to time program execution

• E.g., Unix time command

Output:
• Real: Wall-clock time between program invocation and termination
• User: CPU time spent executing the program
• System: CPU time spent within the OS on the program’s behalf

$ time sort < bigfile.txt > output.txt
real 0m12.977s
user 0m12.860s
sys 0m0.010s

9

Enabling Compiler Optimization
Enable compiler speed optimization
gcc217 –Ox mysort.c –o mysort

• Compiler looks for ways to transform your code so that
result is the same but it runs faster

• x controls how many transformations the compiler tries –
see “man gcc” for details
• -O1: optimize (default if no number is specified)
• -O2: optimize more (longer compile time)
• -O3: optimize yet more (including inlining)

Warning: Speed optimization can affect debugging
• e.g., Optimization eliminates variable Þ GDB cannot print

value of variable

10

Now What?

So you’ve determined that your program is taking too long,
even with compiler optimization enabled (and NDEBUG
defined, etc.)

Is it time to rewrite the program?

Agenda

Should you optimize?

What should you optimize?

Optimization techniques

11

12

Identifying Hot Spots
Spend time optimizing only the parts of the program

that will make a difference!

Gather statistics about your program’s execution

• Coarse-grained: how much time did execution of a particular
function call take?
• Time individual function calls or blocks of code

• Fine-grained: how many times was a particular function called?
How much time was taken by all calls to that function?
• Use an execution profiler such as gprof

13

Timing Parts of a Program
Call a function to compute wall-clock time consumed

• Unix gettimeofday() returns time in seconds + microseconds

• Not defined by C90 standard

#include <sys/time.h>

struct timeval startTime;
struct timeval endTime;
double wallClockSecondsConsumed;

gettimeofday(&startTime, NULL);
<execute some code here>
gettimeofday(&endTime, NULL);
wallClockSecondsConsumed =

endTime.tv_sec - startTime.tv_sec +
1.0E-6 * (endTime.tv_usec - startTime.tv_usec);

14

Timing Parts of a Program (cont.)
Call a function to compute CPU time consumed

• clock() returns CPU times in CLOCKS_PER_SEC units

• Defined by C90 standard

#include <time.h>

clock_t startClock;
clock_t endClock;
double cpuSecondsConsumed;

startClock = clock();
<execute some code here>
endClock = clock();
cpuSecondsConsumed =
((double)(endClock - startClock)) / CLOCKS_PER_SEC;

15

Identifying Hot Spots
Spend time optimizing only the parts of the program

that will make a difference!

Gather statistics about your program’s execution

• Coarse-grained: how much time did execution of a particular
function call take?
• Time individual function calls or blocks of code

• Fine-grained: how many times was a particular function called?
How much time was taken by all calls to that function?
• Use an execution profiler such as gprof

16

GPROF Example Program
Example program for GPROF analysis

• Sort an array of 10 million random integers
• Artificial: consumes lots of CPU time, generates no output

#include <string.h>
#include <stdio.h>
#include <stdlib.h>

enum {MAX_SIZE = 10000000};
int a[MAX_SIZE];

void fillArray(int a[], int size)
{ int i;

for (i = 0; i < size; i++)
a[i] = rand();

}

void swap(int a[], int i, int j)
{ int temp = a[i];

a[i] = a[j];
a[j] = temp;

}
…

17

GPROF Example Program (cont.)
Example program for GPROF analysis (cont.)

…
int partition(int a[], int left, int right)
{ int first = left-1;

int last = right;
for (;;)
{ while (a[++first] < a[right])

;
while (a[right] < a[--last])

if (last == left)
break;

if (first >= last)
break;

swap(a, first, last);
}
swap(a, first, right);
return first;

}
…

18

GPROF Example Program (cont.)
Example program for GPROF analysis (cont.)

…
void quicksort(int a[], int left, int right)
{ if (right > left)

{ int mid = partition(a, left, right);
quicksort(a, left, mid - 1);
quicksort(a, mid + 1, right);

}
}

int main(void)
{ fillArray(a, MAX_SIZE);

quicksort(a, 0, MAX_SIZE - 1);
return 0;

}

19

Using GPROF
Step 1: Instrument the program

gcc217 –pg mysort.c –o mysort
• Adds profiling code to mysort, that is…
• “Instruments” mysort

Step 2: Run the program
./mysort
• Creates file gmon.out containing statistics

Step 3: Create a report

gprof mysort > myreport
• Uses mysort and gmon.out to create textual report

Step 4: Examine the report
cat myreport

20

gprof Design

What's going on behind the scenes?
• -pg generates code to interrupt program many times per second
• Each time, records where the code was interrupted
• gprof uses symbol table to map back to function name

21

The GPROF Report

• Each line describes one function
• name: name of the function
• %time: percentage of time spent executing this function
• cumulative seconds: [skipping, as this isn’t all that useful]
• self seconds: time spent executing this function
• calls: number of times function was called (excluding recursive)
• self s/call: average time per execution (excluding descendants)
• total s/call: average time per execution (including descendants)

% cumulative self self total
time seconds seconds calls s/call s/call name
84.54 2.27 2.27 6665307 0.00 0.00 partition
9.33 2.53 0.25 54328749 0.00 0.00 swap
2.99 2.61 0.08 1 0.08 2.61 quicksort
2.61 2.68 0.07 1 0.07 0.07 fillArray

22

The GPROF Report (cont.)
Call graph profile

index % time self children called name
<spontaneous>

[1] 100.0 0.00 2.68 main [1]
0.08 2.53 1/1 quicksort [2]
0.07 0.00 1/1 fillArray [5]

13330614 quicksort [2]

0.08 2.53 1/1 main [1]
[2] 97.4 0.08 2.53 1+13330614 quicksort [2]

2.27 0.25 6665307/6665307 partition [3]
13330614 quicksort [2]

2.27 0.25 6665307/6665307 quicksort [2]

[3] 94.4 2.27 0.25 6665307 partition [3]
0.25 0.00 54328749/54328749 swap [4]

0.25 0.00 54328749/54328749 partition [3]

[4] 9.4 0.25 0.00 54328749 swap [4]

0.07 0.00 1/1 main [1]
[5] 2.6 0.07 0.00 1 fillArray [5]

23

The GPROF Report (cont.)

Call graph profile (cont.)
• Each section describes one function

• Which functions called it, and how much time was consumed?
• Which functions it calls, how many times, and for how long?

• Usually overkill; we won’t look at this output in any detail

24

GPROF Report Analysis

Observations
• swap() is called very many times; each call consumes little time;
swap() consumes only 9% of the time overall

• partition() is called many times; each call consumes little time;
but partition() consumes 85% of the time overall

Conclusions
• To improve performance, try to make partition() faster
• Don’t even think about trying to make fillArray() or
quicksort() faster

Agenda

Should you optimize?

What should you optimize?

Optimization techniques

25

26

Using Better Algs and DSs

Use a better algorithm or data structure

Example:
• Would a different sorting algorithm work better?

See COS 226…
• But only where it would help! Not worth using asymptotically

efficient (but complex, hard-to-understand, and hard-to-maintain)
algorithms and data structures in parts of code that don't matter!

27

Avoiding Repeated Computation

int g(int x)
{ return f(x) + f(x) + f(x) + f(x);
}

int g(int x)
{ return 4 * f(x);
}

Before:

After:

iClicker Question
Q: Could a good compiler do this optimization for you?

A. Yes

B. Only sometimes

C. No

int g(int x)
{ return f(x) + f(x) + f(x) + f(x);
}

int g(int x)
{ return 4 * f(x);
}

Before:

After:

29

Aside: Side Effects as Blockers

Q: Could a good compiler do that for you?

A: Only sometimes…

Suppose f() has side effects?

int g(int x)
{ return f(x) + f(x) + f(x) + f(x);
}

int g(int x)
{ return 4 * f(x);
}

int counter = 0;
...
int f(int x)
{ return counter++;
}

And f() might be defined in
another file known only at link
time!

Avoiding Repeated Computation

30

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

a[n*i + j] = b[j];

for (i = 0; i < n; i++)
{ ni = n * i;

for (j = 0; j < n; j++)
a[ni + j] = b[j];

}

Before:

After:

iClicker Question
Q: Could a good compiler do this optimization for you?

A. Yes

B. Only sometimes

C. No

for (i = 0; i < n; i++)
{ ni = n * i;

for (j = 0; j < n; j++)
a[ni + j] = b[j];

}

After:

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

a[n*i + j] = b[j];
Before:

Avoiding Repeated Computation

32

for (i = 0; i < strlen(s); i++)
{ /* Do something with s[i] */
}

length = strlen(s);
for (i = 0; i < length; i++)
{ /* Do something with s[i] */
}

Could a good
compiler do
that for you?

Before:

After:

Avoiding Repeated Computation

33

void twiddle(int *p1, int *p2)
{ *p1 += *p2;

*p1 += *p2;
}

void twiddle(int *p1, int *p2)
{ *p1 += *p2 * 2;
}

Before:

After:

iClicker Question
Q: Could a good compiler do this optimization for you?

A. Yes

B. Only sometimes

C. No

void twiddle(int *p1, int *p2)
{ *p1 += *p2;

*p1 += *p2;
}

void twiddle(int *p1, int *p2)
{ *p1 += *p2 * 2;
}

Before:

After:

Aside: Aliases as Blockers

Q: Could a good compiler do that for you?

A: Not necessarily

What if p1 and p2 are aliases?
• What if p1 and p2 point to the same integer?
• First version: result is 4 times *p1
• Second version: result is 3 times *p1

Some compilers support restrict keyword
35

void twiddle(int *p1, int *p2)
{ *p1 += *p2;

*p1 += *p2;
} void twiddle(int *p1, int *p2)

{ *p1 += *p2 * 2;
}

36

Inlining Function Calls

void g(void)
{ /* Some code */
}
void f(void)
{ …

g();
…

}

void f(void)
{ …

/* Some code */
…

}

Before:

After:

Beware: Can introduce redundant/cloned code
Some compilers support inline keyword

Could a good
compiler do
that for you?

37

Unrolling Loops

for (i = 0; i < 6; i++)
a[i] = b[i] + c[i];

for (i = 0; i < 6; i += 2)
{ a[i+0] = b[i+0] + c[i+0];

a[i+1] = b[i+1] + c[i+1];
}

a[i+0] = b[i+0] + c[i+0];
a[i+1] = b[i+1] + c[i+1];
a[i+2] = b[i+2] + c[i+2];
a[i+3] = b[i+3] + c[i+3];
a[i+4] = b[i+4] + c[i+4];
a[i+5] = b[i+5] + c[i+5];

Could a good
compiler do
that for you?

Original:

Some compilers provide option, e.g. –funroll-loops

Maybe
faster:

Maybe
even
faster:

38

Using a Lower-Level Language

Rewrite code in a lower-level language
• As described in second half of course…
• Compose key functions in assembly language instead of C

• Use registers instead of memory
• Use instructions (e.g. adc) that compiler doesn’t know

Beware: Modern optimizing compilers generate fast code
• Hand-written assembly language code could be slower!

39

Summary

Steps to improve execution (time) efficiency:
• Don't do it.
• Don't do it yet.
• Time the code to make sure it's necessary
• Enable compiler optimizations
• Identify hot spots using profiling
• Use a better algorithm or data structure
• Tune the code

