~

"Princeton University

Computer Science 217: Introduction to Programming Systems

®

Data Types in C

Py
:2 M=
o o 163 [= U
— (21 &S
et = I return
— —
=
~T-W.
1define
Nk a=
= b = =
char:s B= =
(5=
e P 5 o
Raay = L A 5 P g
£'es - = TLINE
— — Crury e —
(B ' v
- L"v'-;‘<

B

Goals of C

@ A8

Support system programming Support application programming

Be low-level Be portable
Be easy for people to handle Be easy for computers to handle

« Conflicting goals on multiple dimensions!
« Result: different design decisions than Java

B %
<] : r“)

Primitive Data Types A\

 integer data types

 floating-point data types

« pointer data types

* no character data type (use small integer types instead)

* no character string data type (use arrays of small ints instead)
* no logical or boolean data types (use integers instead)

For “under the hood” details,
stay tuned for
“number systems” lecture
next week

-

Integer Data Types

Integer types of various sizes: signed char, short, int, long

« char is 1 byte

« Number of bits per byte is unspecified!
(but in the 215t century, pretty safe to assume it’s 8)

« Sizes of other integer types not fully specified but constrained:
« int was intended to be “natural word size”

« 2 < sizeof(short) < sizeof(int) < sizeof(long)

On ArmLab:

* Natural word size: 8 bytes (“64-bit machine”)

e char:

e short:
e int:
 long:

1 byte

2 bytes
4 bytes (compatibility with widespread 32-bit code)
8 bytes

-

Integer Literals

Decimal: 123
Octal: 0173 =123
Hexadecimal: 0x7B =123

Use "L" suffix to indicate 1ong literal
No suffix to indicate short literal; instead must use cast

Examples
e int: 123, 0173, O0x7B
e long: 123L, 0173L, Ox7BL

e short: (short) 123,

(short) 0173,

(short) 0x7B

-

Unsigned Integer Data Types

unsigned types: unsigned char, unsigned short,
unsigned int, and unsigned long

* Holds only non-negative integers

« Conversion rules for mixed-type expressions
(Generally, mixing signed and unsigned converts to unsigned)

« See King book Section 7.4 for details

-

Unsigned Integer Literals

Default is signed
« Use "U" suffix to indicate unsigned literal

Examples
e unsigned int:
« 123U, 0173U, 0x7BU
« 123, 0173, 0x7B will work just fine in practice; technically

there is an implicit cast from signed to unsigned, but in these
cases it shouldn’t make a difference.

e unsigned long:
« 123UL, 0173UL, O0x7BUL
e unsigned short:

e (unsigned short) 123, (unsigned short) 0173,
(unsigned short)O0x7B

-

“Character” Data Type

The C char type
« char is designed to hold an ASCII character

* And should be used when you're dealing with characters:
character-manipulation functions we’ve seen (such as toupper)
take and return char

« char might be signed (-128..127) or unsigned (0..255)

« But since 0 < ASCII <127 it doesn’t really matter

 If you want a 1-byte type for calculation, you might (should?) specify
signed char oOr unsigned char

Character Literals

Single quote syntax: 'a’

Use backslash (the escape character) to express

special characters
« Examples (with numeric equivalents in ASCII):

'a’
'\141"
"\x61"'
'b'
A’
'B'
v\ov
0"
1!
v\nv
v\tv
v\\v
v\vv

the
the
the
the
the
the
the
the
the
the
the
the
the

a character (97, 01100001, 61;)
a character, octal form

a character, hexadecimal form

b character (98, 011000105, 624)
A character (65, 01000001, 41,)
B character (66, 010000105, 42,)
null character (0, 00000000z, Of)

zero character (48, 001100005, 30y)

one character (49, 00110001;, 31jy)

newline character (10, 000010105, A;)
horizontal tab character (9, 00001001;, 9jy)
backslash character (92, 010111005, 5C;)
single quote character (96, 011000005, 60y)

o

EE!W

-

Strings and String Literals

Issue: How should C represent strings and
string literals?

Rationale:
« Natural to represent a string as a sequence of contiguous chars
 How to know where char sequence ends?
« Store length together with char sequence?
« Store special “sentinel” char after char sequence?

"

-

Strings and String Literals

Decisions
« Adopt a convention
« String is a sequence of contiguous chars
« String is terminated with null char ("\0")
« Use double-quote syntax (e.g., "hello") to represent a string literal
* Provide no other language features for handling strings
« Delegate string handling to standard library functions

Examples
e 'a' is a char literal How many
« "abed" is a string literal bytes?

« "a" is a string literal

What decisions did the
designers of Java make?

"y

p
Arrays of characters

s|Hlel1|1{o[NO[2]2]2]>

P_/

char 8[10] - {'H','e','l','l','o',O};
(or, equivalently)
char s[10] = "Hello";

p iS a pointer: it
contains the address

char *p = s+2; of another variable

printf ("Je%s!'", p); prints Jello!

-

:

5t‘$
o0

Unicode

<]

Back in 1970s, English was In the 21st century, it turns
the only language in the out that there are other
worldlcitation needed] “gq e all people and languages out
used this alphabet: there SO we need:
IR o wlela
] fM]rﬂ»L-é'- NEINEE
! # % %] & (] + o -] -] 2 A 7 3w o [2 [1Y
ol 12l el s e[[l s <[= o 7 ‘ -] - ' i b:“
qo@-uﬂuzBusc-mDusEusFu?GquwsIunJuqucLMDM-«ENHFD /! }" nl t?‘ -:;l’:l .:: j_'.‘ b - ﬂ
Lol R sl ul v w2 N g A)\ /1] g |3 A I I P I
“al bl cldl el f[gl n[il J[k[1] m[nlo ,3 T mi; INCODe - - pad B
pl al rl sl t] ul vl w x{ yl z|] I3~ d;—'?"/”//\l::-‘}‘r *
b - O 0 = = mlm s OO Q ? C
: : ““‘?‘f—f-n S R
ASCIl: American Standard IR R4 - @ e
| | I = %0 <
Code for Information ol 8o (2=l 2l 2212 o]mla]
I AR
Interchange P 8|oAmimin = = =o g8
(3 Y ¥y
.-.IUC-AWV.......‘.-.?Q‘C

-

Modern Unicode

When Java was designed, Unicode fit into 16 bits,
so char in Java was 16 bits long. Then this happened:

SENATOR &3 1Y

1983: 2018:
1Y ‘UNCODE" STANDARD | | @2 SENTOR G KNG & mﬂgég"%%ﬂﬁggg
soup e v || 87700 '
l —
PROBLEMS CAUSED BY' | | i A LopsteR Bt ks THNGS GoT
,NCOMPHTl BLE B'NP‘RY TO @UNICODE FOR RECOGNIZING THE A LME
TEXT ENCODINGS. IMPACT OF THIS CRITICAL CRUSTACEAN, UE’@ OKAY?
/ IN MAINE AND ACROSS THE COUNTRY,
f. YOURS TRULY,

7%

https://xkcd.com/1953/

4

-

Unicode and UTF-8

:

5&“-’
(ot

<]

J

r‘! TJ r!l .'-“'. :'

rl ;ﬂ 111
Lots of characters in today’s Unicode 71 : l
» 100,000+ defined, capacity for > 1 million J' : f A
S = ~Wcope °
e - - PR RN I
; :“3??9:;;_,\;;_
Can’t modify size of char in C IHHHES e
A TP
b10p 8|0y A =
o |4 1IZIZIEXY

Solution: variable-length encoding (UTF-8)
« Standard ASCII characters use 1 byte
* Most Latin-based alphabets use 2 bytes
* Chinese, Japanese, Korean characters use 3 bytes
 Historic scripts, mathematical symbols, and emoji use 4 bytes
« This won’t be on the exam!

t o

¢Q =
8 3 e '-(T:‘g’.:'i)’.;‘f‘;a":,’.‘:

1o 28
:‘).
: F

: 0

-
(3, 33

N BO R O

8 O 1

-

Logical Data Types

No separate logical or Boolean data type

Represent logical data using type char or int
« Or any integer type
* Or any primitive type!

Conventions:
« Statements (i£, while, etc.) use 0 = FALSE, #0 = TRUE
« Relational operators (<, >, etc.) and logical operators (!, &&, | |)
produce the result 0 or 1

<)

Logical Data Type Shortcuts

Using integers to represent logical data permits shortcuts

int i;

if (i) /* same as (i '= 0) */
statementl;

else
statement2;

It also permits some really bad code...

i=(11'"=2)+ (3 > 4);

17

> iClicker Question

Q: What is i set to in the following code?

i=(11'"=2) + (3 >4);

A.0
B. 1
C.2
D. 3
E.4

-

Logical Data Type Dangers

The lack of a logical data type hampers
compiler's ability to detect some errors

int i: What happens
in Java?
i=20;
if (i = 5)
statementl;

What happens
in C?

J

-

Floating-Point Data Types

C specifies:
* Three floating-point data types:
float, double, and long double

« Sizes unspecified, but constrained:
sizeof(float) < sizeof(double) < sizeof(long double)

On ArmLab (and on pretty much any 21st-century computer
using the IEEE standard)
« float: 4 bytes
« double: 8 bytes

On ArmLab (but varying a lot across architecures)
« long double: 16 bytes

J

-

Floating-Point Literals

How to write a floating-point number?

Either fixed-point or “scientific” notation

Any literal that contains decimal point or "E" is floating-point
The default floating-point type is double

Append "F" to indicate float

Append "L" to indicate 1long double

Examples
« double: 123.456, 1E-2, -1.23456E4
« float: 123.456F, 1E-2F, -1.23456E4F

* long double: 123.456L, 1E-21, -1.23456E4L

o

-

Data Types Summary: C vs. Java

Java only
e boolean, byte

C only

e unsigned char, unsigned short, unsigned int,
unsigned long, long double

Sizes

« Java: Sizes of all types are specified, and portable
« C: Sizes of all types except char are system-dependent

Type char

« Java: char is 2 bytes (to hold all 1995-era Unicode values)
 C: charis 1 byte

2

