
9/12/19

1

$ cat welcome.c
#include <stdio.h>

int main(int argc, char *argv[])
{

printf(“Welcome to COS 217\n");
printf("Introduction to Programming Systems\n\n");

printf("%s %d\n", ”Fall", 2019);
return 0;

}

$ cat Makefile
CC=gcc217
welcome: welcome.o

$ make
gcc217 -c -o welcome.o welcome.c
gcc217 welcome.o -o welcome

$./welcome
Welcome to COS 217
Introduction to Programming Systems

Fall 2019

Agenda

Course overview
• Introductions
• Course goals
• Resources
• Grading
• Policies
• Schedule

Getting started with C
• History of C
• Building and running C

programs
• Characteristics of C
• C details (if time)

2

3

Introductions

Lead Instructor
• Jennifer Rexford jrex@cs.princeton.edu

Lead Preceptors
• Xiaoyan Li xiaoyan@cs.princeton.edu
• Christopher Moretti cmoretti@cs.princeton.edu

Graduate Student Preceptors
• Alberto Benmaman albertob@princeton.edu
• Greg Chan gc14@princeton.edu
• John Li johnli@princeton.edu
• Ethan Tseng eftseng@princeton.edu
• Josh Zhang jiashuoz@princeton.edu

Agenda

Course overview
• Introductions
• Course goals
• Resources
• Grading
• Policies
• Schedule

Getting started with C
• History of C
• Building and running C

programs
• Characteristics of C
• C details (if time)

4

Goal 1: Programming in the Large

Learn how to compose
large computer programs

Topics
• Modularity/abstraction, information hiding, resource management,

error handling, testing, debugging, performance improvement,
tool support

5 6

Goal 2: Under the Hood

Downward tours

C Language

Assembly Language

Machine Language

Application Program

Operating System

Hardware

language
levels
tour

service
levels
tour

Learn what happens
“under the hood” of
computer systems

Learn “how to be
a client of an

operating system”

mailto:jrex@cs.princeton.edu
mailto:xiaoyan@cs.princeton.edu
mailto:cmoretti@cs.princeton.edu
mailto:albertob@princeton.edu
mailto:gc14@princeton.edu
mailto:johnli@princeton.edu
mailto:eftseng@princeton.edu
mailto:jiashuoz@princeton.edu

9/12/19

2

Modularity!

8

Goals: Summary
Help you to become a...

Power Programmer!!!

Specific Goal: Learn C

Question: Why C instead of Java?

Answer 1: A primary language for
“under the hood” programming

Answer 2: Knowing a variety of approaches
helps you “program in the large”

9

Specific Goal: Learn Linux
Question: Why use the Linux operating system?

Answer 1: Linux is the industry standard for servers,
embedded devices, education, and research

Answer 2: Linux (with GNU tools) is good for programming
(which helps explain answer 1)

10

Agenda

Course overview
• Introductions
• Course goals
• Resources
• Grading
• Policies
• Schedule

Getting started with C
• History of C
• Building and running C

programs
• Characteristics of C
• C details (if time)

11 12

Lectures
Lectures

• Describe material at conceptual (high) level
• Slides available via course website

Etiquette
• Use electronic devices only for taking notes or annotating slides

(but consider taking notes by hand – research shows it works better!)
• No SnapFaceNewsBookInstaGoo, please

iClicker
• Register in Blackboard (not with iClicker – they’ll charge you)
• Occasional questions in class, graded on participation

(with a generous allowance for not being able to attend)

9/12/19

3

iClicker Question
Q: Do you have an iClicker with you today?

A. Yes

B. No, but I’ve been practicing my mental electrotelekinesis and
the response is being registered anyway

C. I’m not here, but someone is iClicking for me
(don’t do this – it’s a violation of our course policies!)

14

Precepts
Precepts

• Describe material at the “practical” (low) level
• Support your work on assignments
• Hard copy handouts distributed during precepts
• Handouts available via course website

Etiquette
• Attend your precept – attendance will be taken

• Must miss your precept? ⇒ inform preceptors & attend another
• Use TigerHub to move to another precept

• Trouble ⇒ See Colleen Kenny (CS Bldg 210)
• But Colleen can’t move you into a full precept

Precepts begin next week!

15

Website

https://www.cs.princeton.edu/courses/archive/fall19/cos217/
• Home page, schedule page, assignment page, policies page

16

Piazza

Piazza
• http://piazza.com/princeton/fall2019/cos217
• Instructions provided in first precept

Piazza etiquette
• Study provided material before posting question

• Lecture slides, precept handouts, required readings
• Read / search all (recent) Piazza threads before posting question
• Don’t reveal your code!

• See course policies

Books
C Programming: A Modern Approach

(Second Edition) (required)
• King
• C programming language and standard libraries

ARM 64-bit Assembly Language (required)
• Pyeatt & Ughetta
• Book or preprint will be made available later in the term

The Practice of Programming (recommended)
• Kernighan & Pike
• “Programming in the large”

Computer Systems: A Programmer’s
Perspective (Third Edition) (recommended)
• Bryant & O'Hallaron
• “Under the hood” 17 18

Manuals

Manuals (for reference only, available online)
• ARMv8 Instruction Set Overview
• ARM Architecture Reference Manual
• Using as, the GNU Assembler

See also
• Linux man command

https://www.cs.princeton.edu/courses/archive/fall19/cos217/
http://piazza.com/princeton/fall2019/cos217

9/12/19

4

Programming Environment

19

Your Computer

SSH

ArmLab Cluster

Linux OS

GNU
tools

Your
Program

armlab01

Server Client

On-campus or
off-campus

armlab02

Agenda

Course overview
• Introductions
• Course goals
• Resources
• Grading
• Policies
• Schedule

Getting started with C
• History of C
• Building and running C

programs
• Characteristics of C
• C details (if time)

20

Grading

* Final assignment counts double; penalties for lateness

** Closed book, closed notes, no electronic devices

*** Did your involvement benefit the course as a whole?
• Lecture/precept attendance and participation counts

21

Course Component Percentage of Grade
Assignments * 50
Midterm Exam ** 15
Final Exam ** 25
Participation *** 10

These
percentages are

approximate

Programming Assignments
Regular (not-quite-weekly) assignments

0. Introductory survey
1. “De-comment” program
2. String module
3. Symbol table module
4. Assembly language programs
5. Buffer overrun attack
6. Heap manager module
7. Unix shell
*(some individual, some done with a partner from your precept)

Assignments 0 and 1 are available now

Start early!!!
22

Agenda

Course overview
• Introductions
• Course goals
• Resources
• Grading
• Policies
• Schedule

Getting started with C
• History of C
• Building and running C

programs
• Characteristics of C
• C details (if time)

23 24

Policies
Learning is a collaborative activity!

• Discussions with others that help you understand
concepts from class are encouraged

But programming assignments are graded!
• Everything that gets submitted for a grade

must be exclusively your own work
• Don’t look at code from someone else, the web,

Github, etc. – see the course “Policies” web page
• Don’t reveal your code or design decisions to anyone except

course staff – see the course “Policies” web page

Violations of course policies
• Typical course-level penalty is 0 on the assignment
• Typical University-level penalty is suspension from University

for 1 academic year

9/12/19

5

Assignment Related Policies
Some highlights:

• You may not reveal any of your assignment solutions (products,
descriptions of products, design decisions) on Piazza.

• Getting help: To help you compose an assignment solution you
may use only authorized sources of information, may consult with
other people only via the course's Piazza account or via interactions
that might legitimately appear on the course's Piazza account, and
must declare your sources in your readme file for the assignment.

• Giving help: You may help other students with assignments only
via the course's Piazza account or interactions that might
legitimately appear on the course's Piazza account, and you
may not share your assignment solutions with anyone, ever
(including after the semester is over), in any form.

Ask the instructor for clarifications
• Permission to deviate from policies must be obtained in writing.

25

Agenda

Course overview
• Introductions
• Course goals
• Resources
• Grading
• Policies
• Schedule

Getting started with C
• History of C
• Building and running C

programs
• Characteristics of C
• C details (if time)

26

27

Course Schedule

Weeks Lectures Precepts
1-2 C (conceptual)

Number Systems
C (pragmatic)
Linux/GNU

3-6 Programming in the Large Advanced C

6 Midterm Exam
7 Fall break!
8-13 “Under the Hood”

(conceptual)
“Under the Hood”
(assignment how-to)

Reading Period
Final Exam

28

Questions?

Agenda

Course overview
• Introductions
• Course goals
• Resources
• Grading
• Policies
• Schedule

Getting started with C
• History of C
• Building and running C

programs
• Characteristics of C
• C details (if time)

29

The C Programming Language

Who? Dennis Ritchie

When? ~1972

Where? Bell Labs

Why? Build the Unix OS

30

9/12/19

6

31

Java vs. C: History

BCPL B C K&R C ANSI C89
ISO C90

ISO C99
ANSI C99

1960 1970 1972 1978 1989 1999

LISP Smalltalk

C++ Java

ISO C11

2011

Algol

Simula

This is what
we’re using

C vs. Java: Design Goals

32

C Design Goals (1972) Java Design Goals (1995)
Build the Unix OS Language of the Internet
Low-level; close to HW and OS High-level; insulated from

hardware and OS
Good for system-level
programming

Good for application-level
programming

Support structured programming Support object-oriented
programming

Unsafe: don’t get in the
programmer’s way

Safe: can’t step
“outside the sandbox”
Look like C!

Agenda

Course overview
• Introductions
• Course goals
• Resources
• Grading
• Policies
• Schedule

Getting started with C
• History of C
• Building and running C

programs
• Characteristics of C
• C details (if time)

33

HW (ArmLab)

OS (Linux)

Building Java Programs

34

MyProg.java
(Java code)

javac MyProg.class
(bytecode)

$ javac MyProg.java Java compiler
(machine lang code)

Running Java Programs

35

$ java MyProg

MyProg.class
(bytecode)

Java interpreter /
“virtual machine”

(machine lang code)

HW (ArmLab)

OS (Linux)

data java data

HW (ArmLab)

OS (Linux)

Building C Programs

36

myprog.c
(C code) gcc217 myprog

(machine lang code)

$ gcc217 myprog.c –o myprog C “Compiler driver”
(machine lang code)

9/12/19

7

Running C Programs

37

$./myprog myprog
(machine lang code)

HW (ArmLab)

OS (Linux)

data myprog data

Agenda

Course overview
• Introductions
• Course goals
• Resources
• Grading
• Policies
• Schedule

Getting started with C
• History of C
• Building and running C

programs
• Characteristics of C
• C details (if time)

38

Java vs. C: Portability

39

Program Code Type Portable?
MyProg.java Java source code Yes
myprog.c C source code Mostly

MyProg.class Bytecode Yes
myprog Machine lang code No

Conclusion: Java programs are more portable

(In particular, last semester we moved from the
x86_64-based “courselab” to the ARM64-based “armlab”,
and all of the programs had to be recompiled!)

Java vs. C: Safety & Efficiency
Java

• Automatic array-bounds checking,
• NULL pointer checking,
• Automatic memory management (garbage collection)
• Other safety features

C
• Manual bounds checking
• NULL pointer checking,
• Manual memory management

Conclusion 1: Java is often safer than C

Conclusion 2: Java is often slower than C
40

Java vs. C: Characteristics

41

Java C

Portability + -
Efficiency - +

Safety + -

Q: Which corresponds to the C programming language?

A.

B.

C.

iClicker Question

9/12/19

8

Agenda

Course overview
• Introductions
• Course goals
• Resources
• Grading
• Policies
• Schedule

Getting started with C
• History of C
• Building and running C

programs
• Characteristics of C
• C details (if time)

43 44

Java vs. C: Details

Remaining slides provide some details

Use for future reference

Slides covered now, as time allows…

45

Java vs. C: Details

Java C

Overall
Program
Structure

Hello.java:

public class Hello

{ public static void main
(String[] args)

{ System.out.println(
"hello, world");

}
}

hello.c:

#include <stdio.h>

int main(void)
{ printf("hello, world\n");

return 0;
}

Building $ javac Hello.java $ gcc217 hello.c –o hello

Running
$ java Hello
hello, world
$

$./hello
hello, world
$

46

Java vs. C: Details
Java C

Character type char // 16-bit Unicode char /* 8 bits */

Integral types

byte // 8 bits
short // 16 bits
int // 32 bits
long // 64 bits

(unsigned, signed) char
(unsigned, signed) short
(unsigned, signed) int
(unsigned, signed) long

Floating point
types

float // 32 bits
double // 64 bits

float
double
long double

Logical type boolean /* no equivalent */
/* use 0 and non-0 */

Generic pointer
type

Object void*

Constants final int MAX = 1000;
#define MAX 1000
const int MAX = 1000;
enum {MAX = 1000};

47

Java vs. C: Details
Java C

Arrays
int [] a = new int [10];
float [][] b =

new float [5][20];

int a[10];
float b[5][20];

Array bound
checking

// run-time check /* no run-time check */

Pointer type
// Object reference is an
// implicit pointer int *p;

Record type

class Mine
{ int x;

float y;
}

struct Mine
{ int x;

float y;
};

48

Java vs. C: Details
Java C

Strings
String s1 = "Hello";
String s2 = new

String("hello");

char *s1 = "Hello";
char s2[6];
strcpy(s2, "hello");

String
concatenation

s1 + s2
s1 += s2

#include <string.h>
strcat(s1, s2);

Logical ops * &&, ||, ! &&, ||, !

Relational ops * =, !=, <, >, <=, >= =, !=, <, >, <=, >=

Arithmetic ops * +, -, *, /, %, unary - +, -, *, /, %, unary -

Bitwise ops <<, >>, >>>, &, ^, |, ~ <<, >>, &, ^, |, ~

Assignment ops
=, +=, -=, *=, /=, %=,
<<=, >>=, >>>=, &=, ^=, |=

=, +=, -=, *=, /=, %=,
<<=, >>=, &=, ^=, |=

* Essentially the same in the two languages

9/12/19

9

49

Java vs. C: Details
Java C

if stmt *

if (i < 0)
statement1;

else
statement2;

if (i < 0)
statement1;

else
statement2;

switch stmt *

switch (i)
{ case 1:

...
break;

case 2:
...
break;

default:
...

}

switch (i)
{ case 1:

...
break;

case 2:
...
break;

default:
...

}

goto stmt // no equivalent goto someLabel;

* Essentially the same in the two languages
50

Java vs. C: Details
Java C

for stmt
for (int i=0; i<10; i++)

statement;

int i;
for (i=0; i<10; i++)

statement;

while stmt *
while (i < 0)

statement;
while (i < 0)

statement;

do-while stmt *
do

statement;
while (i < 0)

do
statement;

while (i < 0);

continue stmt * continue; continue;

labeled continue
stmt

continue someLabel; /* no equivalent */

break stmt * break; break;

labeled break
stmt

break someLabel; /* no equivalent */

* Essentially the same in the two languages

51

Java vs. C: Details
Java C

return stmt *
return 5;
return;

return 5;
return;

Compound stmt
(alias block) *

{
statement1;
statement2;

}

{
statement1;
statement2;

}

Exceptions throw, try-catch-finally /* no equivalent */

Comments
/* comment */
// another kind

/* comment */

Method / function
call

f(x, y, z);
someObject.f(x, y, z);
SomeClass.f(x, y, z);

f(x, y, z);

* Essentially the same in the two languages
52

Example C Program
#include <stdio.h>
#include <stdlib.h>

int main(void)
{ const double KMETERS_PER_MILE = 1.609;

int miles;
double kMeters;

printf("miles: ");
if (scanf("%d", &miles) != 1)
{ fprintf(stderr, "Error: Expected a number.\n");

exit(EXIT_FAILURE);
}

kMeters = (double)miles * KMETERS_PER_MILE;
printf("%d miles is %f kilometers.\n",

miles, kMeters);
return 0;

}

53

Summary

Course overview
• Introductions
• Course goals

• Goal 1: Learn “programming in the large”
• Goal 2: Look “under the hood”and learn low-level programming
• Use of C and Linux supports both goals

• Resources
• Lectures, precepts, programming environment, Piazza, textbooks
• Course website: access via http://www.cs.princeton.edu

• Grading
• Policies
• Schedule

54

Summary

Getting started with C
• History of C
• Building and running C programs
• Characteristics of C
• Details of C

• Java and C are similar
• Knowing Java gives you a head start at learning C

9/12/19

10

55

Getting Started

Check out course website soon
• Study “Policies” page
• First assignment is available

Establish a reasonable computing environment soon
• Instructions given in first precept

