
Compression; Error detection & correction

•  compression: squeeze out redundancy
–  to use less memory and/or use less network bandwidth,
–  encode the same information in fewer bits

•  some bits carry no information
•  some bits can be computed or inferred from others
•  some bits don't matter to the recipient and can be dropped entirely

•  error detection & correction: add redundancy
–  to detect and fix up loss or damage
–  add carefully defined, systematic redundancy
–  with enough of the right redundancy,

can detect damaged bits
can correct errors

Compressing English text

•  letters do not occur equally often
•  encode frequent letters with fewer bits,
•  encode less frequent letters with more bits
•  trades complexity against space

–  e.g., Morse code, Huffman code, ...

•  run-length encoding
–  encode runs of identical things with a count
–  e.g., World Wide Web Consortium => WWWC => W3C

•  words do not occur equally often
•  encode whole words or phrases, not just letters

–  e.g., abbreviations for frequent words or sequences
–  acronyms, shorthands, ...

Lempel-Ziv coding; adaptive compression algorithms

•  build a dictionary of recently occurring data
•  replace subsequent occurrences by (shorter) reference to the dictionary

entry
•  dictionary adapts as more input is seen

–  compression adapts to properties of particular input
–  algorithm is independent of nature of input

•  dictionary is included in the compressed data

•  Lempel-Ziv is the basis of PKZip, Winzip, gzip, GIF
–  compresses Bible from 4.1 MB to 1.2 MB (typical for text)

•  Lempel-Ziv is a lossless compression scheme
–  compression followed by decompression reproduces the input exactly

•  lossy compression: may do better if can discard some information
–  commonly used for pictures, sounds, movies

JPEG (Joint Photographic Experts Group) picture compression

•  a lossy compression scheme, based on how our eyes work
•  digitize picture into pixels
•  discard some color information (use fewer distinct colors)

–  eye is less sensitive to color variation than brightness
•  discard some fine detail

–  decompressed image is not quite as sharp as original
•  discard some fine gradations of color and brightness

•  use Huffman code, run-length encoding, etc., to compress resulting
stream of numeric values

•  compression is usually 10:1 to 20:1 for pictures
•  used in web pages, digital cameras, ...

What about PNG (Portable Network Graphics) compression?

•  PNG is lossless
•  PNG was always an open algorithm – no patent issues

•  PNG versus JPG?
–  JPG is "designed for photographic image data, which is typically

dominated by soft, low-contrast transitions, and an amount of noise or
similar irregular structures."

–  "Using PNG instead of a high-quality JPEG for such images would result
in a large increase in filesize with negligible gain in quality."

–  "In comparison, when storing images that contain text, line art, or
graphics – images with sharp transitions and large areas of solid color –
the PNG format can compress image data more than JPEG can.
Additionally, PNG is lossless, while JPEG produces visual artifacts
around high-contrast areas."

•  "Where an image contains both sharp transitions and photographic
parts, a choice must be made between the two effects."

MPEG (Moving Picture Experts Group) movie compression

•  MPEG-4: lossy compression scheme, based on human perceptions
–  H.264 is most-used current version

•  uses JPEG for individual frames (spatial redundancy)
•  adds compression of temporal redundancy

–  look at image in blocks
–  if a block hasn't changed, just transmit that fact, not the content
–  if a block has moved, transmit amount of motion
–  motion prediction (encode expected differences plus correction)
–  separate moving parts from static background
–  ...

•  used in phones, DVD, TV, Internet video, video games, ...
•  rate depends on resolution, frame rate, ...

MP3 (MPEG Audio Layer-3) sound compression

•  movies have sound as well as motion; this is the audio part
•  3 levels, with increasing compression, increasing complexity
•  based on "perceptual noise shaping":
 use characteristics of the human ear to compress better:

–  human ear can't hear some sounds (e.g., very high frequencies)
–  human ear hears some sounds better than others
–  louder sounds mask softer sounds

•  break sound into different frequency bands
•  encode each band separately
•  encode 2 stereo channels as 1 plus difference
•  gives about 10:1 compression over CD-quality audio

–  1 MB/minute instead of 10 MB/minute
–  can trade quality against compression

Summary of compression

•  eliminate / reduce redundancy
–  more frequent things encoded with fewer bits
–  use a dictionary of encoded things, and refer to it (Lempel-Ziv)
–  encode repetitions with a count

•  not everything can be compressed
–  something will be bigger

•  lossless vs lossy compression
–  lossy discards something that is not needed by recipient

•  tradeoffs
–  encoding time and complexity vs decoding time and complexity
–  encoding is usually slower and more complicated (done once)
–  parameters in lossy compressions

size, speed, quality

Error detection and correction

•  systematic use of redundancy to defend against errors

•  some common numbers have no redundancy
–  and thus can't detect when an error might have occurred
–  e.g., SSN -- any 9-digit number is potentially valid

•  if some extra data is added or if some possible values are excluded,
this can be used to detect and even correct errors

•  common examples include
–  ATM & credit card numbers
–  ISBN for books
–  bar codes for products

ATM card checksum

•  credit card / ATM card checksum:
starting at rightmost digit:
 multiply digit alternately by 1 or 2
 if result is > 9 subtract 9
 add the resulting digits
sum should be divisible by 10

e.g., 12345678 is invalid
 8 + (14-9) + 6 + (10-9) + 4 + 6 + 2 + 2 = 34
but 42345678 is valid
 8 + (14-9) + 6 + (10-9) + 4 + 6 + 2 + 8 = 40

•  defends against transpositions and many single digit errors
–  these are the most common errors

Parity & other binary codes

•  parity bit: use one extra bit so total number of 1-bits is even
 0110100 => 01101001
 0110101 => 01101010
–  detects any single-bit error

•  more elaborate codes can detect and even correct errors

•  basic idea is to add extra bits systematically so that legal values are
uniformly spread out, so any small error converts a legal value into an
illegal one
–  some schemes correct random isolated errors
–  some schemes correct bursts of errors (used in CD-ROM and DVD)

•  no error correcting code can detect/correct all errors
–  a big enough error can convert one legal pattern into another one

