
Programming language components

•  syntax: grammar rules for defining legal statements
–  what's grammatically legal? how are things built up from smaller things?

•  semantics: what things mean
–  what do they compute?

•  statements: instructions that say what to do
–  compute values, make decisions, repeat sequences of operations

•  variables: places to hold data in memory while program is running
–  numbers, text, ...

•  most languages are higher-level and more expressive than the assembly
language for the toy machine
–  statements are much richer, more varied, more expressive
–  variables are much richer, more varied
–  grammar rules are more complicated
–  semantics are more complicated

•  but it's basically the same idea

What is Javascript?

•  a comparatively simple language that can
 be compiled and run within a browser
 (not true of Java, the competitor at the time)

•  designed & implemented in 1995
 by Brendan Eich at Netscape

•  provides dynamic effects (e.g., drag and drop), local computation,
effective and efficient interaction with server

•  widely used
–  supported by all browsers
–  Javascript code on almost all web pages
–  increasingly used on servers (outside of browsers)

Javascript components
•  Javascript language

–  statements that tell the computer what to do
get user input, display output, set values, do arithmetic,
test conditions, repeat groups of statements, …

•  libraries, built-in functions
–  pre-fabricated pieces that you don't have to create yourself

alert, prompt, math functions, text manipulation, ...
•  access to browser and web pages

–  buttons, text areas, images, page contents, ...

•  you are not expected to remember syntax or other details
•  you are not expected to write code in exams

(though a bit in problem sets and labs)

•  you are expected to understand the ideas
–  how programming and programs work
–  figure out what a tiny program does or why it's broken

Basic example 0: echo a name (name.html)

•  Javascript code appears in HTML file between <script> tags
 <script> ... </script>
•  this example shows a variable and a dialog box

<html>
<body>
<P> nam2.html: echoes a name
<script>
 var name;
 name = prompt("What's your name?");
 alert("hello, " + name);
</script>

Basic example 1: join 2 names (name2.html)

•  Javascript code appears in HTML file between <script> tags
 <script> ... </script>
•  shows variables, dialog boxes, and an operator

<html>
<body>
<P> name2.html: joins 2 names
<script>
 var firstname, secondname, result;
 firstname = prompt("Enter first name");
 secondname = prompt("Enter last name");
 result = firstname + secondname; // + means "join" here
 alert("hello, " + result); // and here
</script>

Basic example 2: add 2 numbers (add2.html)

•  dialog boxes, variables, arithmetic, conversion

<html>
<body>
<P> add2.html: adds 2 numbers
<script>
 var num1, num2, sum;
 num1 = prompt("Enter first number");
 num2 = prompt("Enter second number");
 sum = parseInt(num1) + parseInt(num2); // "+" means "add"
 alert(sum);
</script>

parseInt(...) converts a sequence of characters into its integer value  
there's also a parseFloat(…) for floating point numbers

Adding up lots of numbers: addup.html
•  variables, operators, expressions, assignment statements
•  while loop, relational operator (!= means "not equal to")

<html>
<body>
<script>
 var sum = 0;
 var num;
 num = prompt("Enter new value, or 0 to end");
 while (num != 0) {
 sum = sum + parseInt(num);
 num = prompt("Enter new value, or 0 to end");
 }
 alert("Sum = " + sum);
</script>

Variables, constants, expressions, operators

•  a variable is a place in memory that holds a value
–  has a name that the programmer gave it, like sum or Area or n
–  in Javascript, can hold any of multiple types, most often

 numbers like 1 or 3.14, or
 sequences of characters like "Hello" or "Enter new value"

–  always has a value
–  has to be set to some value initially before it can be used
–  its value will generally change as the program runs
–  ultimately corresponds to a location in memory
–  but it's easier to think of it just as a name for information

•  a constant is an unchanging literal value like 3 or "hello"
•  an expression uses operators, variables and constants
 to compute a value

 3.14 * rad * rad
•  operators include + - * /

Types, declarations, conversions

•  variables have to be declared in a var statement

•  each variable holds information of a specific type
–  really means that bits are to be interpreted as info of that type
–  internally, 3 and 3.00 and "3.00" are represented differently

•  Javascript usually infers types from context, does conversions
automatically
–  "Sum = " + sum

•  sometimes we have to be explicit:
–  parseInt(...) if can't tell from context that string is meant as an integer
–  parseFloat(...) if it could have a fractional part

Making decisions and repeating statements

•  if-else statement makes decisions
–  the Javascript version of decisions written with ifzero, ifpos, ...

if (condition is true) {
do this group of statements

} else {
 do this group of statements instead
}

•  while statement repeats groups of statements
–  a Javascript version of loops written with ifzero and goto

while (condition is true) {
 do this group of statements
}

Functions

•  a function is a group of statements that does some computation

–  the statements are collected into one place and given a name
–  other parts of the program can "call" the function

 that is, use it as a part of whatever they are doing
–  can give it values to use in its computation (arguments or parameters)
–  the function computes a value that can be used in expressions
–  the value need not be used

•  Javascript provides some useful built-in functions
–  e.g., prompt, alert, ...

•  you can write your own functions

Summary: elements of (most) programming languages

•  constants: literal values like 1, 3.14, "Error!"
•  variables: places to store data and results during computing
•  declarations: specify name (and type) of variables, etc.
•  expressions: operations on variables and constants to produce new

values
•  statements: assignment, conditional, loop, function call

–  assignment: store a new value in a variable
–  conditional: compare and branch; if-else
–  loop: repeat statements while a condition is true

•  functions: package a group of statements so they can be called / used
from other places in a program

•  libraries: functions already written for you

