COS 109: Computers in our World

• Brian Kernighan
 bwk@cs.princeton.edu 311 CS bldg www.cs.princeton.edu/~bwk
 tentative office hours Mon 3:00-4:30 & Tue 2:30-4:30
 or make an appointment (with wase.princeton.edu or by email)
 or just drop in any time

• TAs: Xi Chen, Darby Haller

• web site: www.cs.princeton.edu/courses/archive/fall19/cos109
 (generally there's nothing on Blackboard)
• fill out the survey
• first problem set due 5pm Wednesday September 25
• first lab due midnight Friday September 27
Administrivia (check the web page!)

- notes will be posted online
 - but not everything will be in them or in the textbook
- readings: ~ 1 hour/week, before class
- 8 problem sets: ~ 1-2 hours/week
 - posted Wednesday, due following Wednesday 5pm
- 8 labs: ~ 2-3 hours/week plus reading to prepare
 - posted by Sunday, due Friday midnight
 - you can do the labs on your own, anywhere, any time
 - there will be lab assistants to help
- open-book midterm during midterm week
 (take-home or in-class? not sure yet)
- open-book final exam in January
- grading (approximately):
 20% problem sets + 20% labs + 20% midterm + 40% final
 class participation helps; frequent absences will definitely hurt
 remember that P/D/F has three possible outcomes
Textbook

- $17.21 at Labyrinth
 - with additional student discount?
- $19.20 at Amazon

- good supplementary reading if you're interested in privacy and security:
 (~ $8 @ Amazon)
House rules

• don't use your laptop, phone, or tablet except for notes
 – it distracts you
 – it distracts your neighbors
 – it distracts me

• sleeping is ok; please don't snore

• stay home if you're sick

• ask questions about anything any time
Outline

• hardware (3-4 weeks)
 – how computers represent and process information
 – what's inside a computer, how it works, how it's built

• software (3-4 weeks)
 – how we tell computers how to do things
 – a very gentle introduction to programming in Javascript

• communications (3-4 weeks)
 – how the Internet and Web work
 – big data, machine learning, artificial intelligence
 – threats and defenses: privacy, security, cryptography

• along the way
 – current events, history, QR, ...
Hardware: tangible devices and gadgets

- how computers represent and process information
 - universal digital representation of information:
 everything is represented as numbers
 - bits, bytes, binary

- a computer is a universal digital processor
 - it stores data and instructions in the same memory
 - the instructions are numbers
 - it's a general purpose machine:
 change the numbers and it does something different
 - your phone is a computer

- hardware has been getting smaller, cheaper, faster exponentially for 50+ years
Software: telling computers what to do

• algorithms
 – precise sequences of steps to perform various tasks
 – what's possible, what’s feasible, what's efficient
 some problems are intrinsically very hard (we think)

• programs and programming
 – implementation of algorithms to be run on a computer
 – programming languages: how to express the steps
 – real programs: operating systems and applications

• software intellectual property issues
 – patents, copyrights, standards, ...
Communications: computers talking to each other

• the Internet is a universal digital network
 – depends on protocols, standards, agreements, cooperation
• we can easily communicate with people anywhere
 – we are visible to and accessible by strangers everywhere
• information passes through many sites
 – where it can be inspected, modified, blocked, slowed down, …
• personal privacy and security are at risk
 – tracking, data aggregation, surveillance (government and commercial)
 – phishing, identity theft, …
 – viruses, worms, bots, hijacking, trolls, disinformation, …
• everything on the Internet is vulnerable
 – cyber attacks
 – Internet of Things
It's not just computers

- computers and networking are spreading into devices
- devices are increasingly powerful
- devices and systems are increasingly connected to the Internet: "Internet of Things"

phones
games
consumer electronics: Alexa et al, smart TVs, Fitbit, ...
cars (self-driving or not)
planes
telephone, power, transportation, infrastructure
medical systems
weapons
...

Privacy

- data for shopping, banking, taxes, ..., is all digital
 - public records are increasingly digital too
 e.g., election contributions often include home addresses

- data is easy to collect, store, copy, analyze, sell

- technically, it's impossible to control access
 - we're vulnerable to bugs, incompetence, stupidity, theft

- legally, in USA, we don't control data about ourselves
 - anyone can collect and sell anything about all of us
 - laws are different in different countries (e.g., European Union GDPR)
 - some (but not all) countries are more restrictive
Security

• the universal network makes us vulnerable to strangers
 – the Internet has no geography
 – it's easy to lie about who you are and where you are
 – the bad guys are usually far away

• general-purpose computers are everywhere
 – "active content": web pages, email can contain programs

• leads to spam, phishing, viruses, spyware, botnets, ...
 – tracking and surveillance by governments and businesses
 – theft by criminals everywhere

• it's impossible to control such programs
 – and to eliminate tracking and surveillance
 – and trolling, fake news, influencing
Goals

• understanding of how digital systems work
 – hardware, software, communications
 – representation, processing, storage, transmission of information
 – principles, not just today's details and buzzwords
 – a handful of useful skills

• some sense of the past and possible futures
 – history, trends, potential, intrinsic limitations, tradeoffs

• some appreciation of computer science as a discipline
 – great ideas, algorithms, capabilities and limits of computers
 – and its usefulness in other academic fields

• useful quantitative reasoning
 – numeracy: reasoning, estimation, assessing numbers, ...
 – judgment: do the numbers make sense? are they plausible?

• intelligent skepticism about technology