Introduction to practical aspects of Deep Learning

Yuping Luo

Introduction to practical aspects of Deep Learning PyTorch

Yuping Luo

Why using a framework?

- Performance;
- Fewer bugs;
- Code reuse (backpropagation, convolution, etc.);
- Community;
- ...

Basic Pipeline

- 1. (Installation and Import) -
- 2. Data Loading
- 3. Network Architecture
- 4. Optimization(train)
- 5. Evaluation

	•	
	2	import torch.nn as nn
	3	import torch.nn.functional as F
	4	import torch.optim as optim
	5	from torch.utils.data import DataLoader
	6	from torchvision import datasets, transforms
	7	
	8	<pre>train_loader = torch.utils.data.DataLoader(</pre>
	9	datasets.MNIST('/data', train=True, download=True,
	10	transform=transforms.Compose([transforms.ToTensor(),
	10	<pre>transforms.Normalize((0.1307,), (0.3081,))])),</pre>
	11	<pre>batch_size=32, shuffle=True)</pre>
	12	test_loader = torch.utils.data.DataLoader(
	13	<pre>datasets.MNIST('/data', train=False,</pre>
	14	transform=transforms.Compose([transforms.ToTensor(),
	7.4	transforms.Normalize((0.1307,), (0.3081,))])),
	15	batch size=32)
	16	Datch_Size=52)
	17	device - teach device("env") # "evde"
	18	<pre>device = torch.device("cpu") # "cuda"</pre>
	19	
		<pre>model = nn.Sequential(</pre>
	20	nn.Linear(784, 200),
\rightarrow	21	nn.ReLU(),
	22	nn.Linear(200, 10),
	23	<pre>nn.LogSoftmax(dim=-1),</pre>
	24).to(device)
	25	
	26	<pre>optimizer = optim.SGD(model.parameters(), lr=0.01)</pre>
	27	
	27 28	def train():
	27 28 29	<pre>def train(): model.train()</pre>
	27 28 29 30	<pre>def train(): model.train() for data, target in train_loader:</pre>
	27 28 29 30 31	<pre>def train(): model.train() for data, target in train_loader: data, target = data.to(device).view(-1, 28 * 28), target.to(device)</pre>
\rightarrow	27 28 29 30 31 32	<pre>def train(): model.train() for data, target in train_loader: data, target = data.to(device).view(-1, 28 * 28), target.to(device) optimizer.zero_grad()</pre>
\rightarrow	27 28 29 30 31 32 33	<pre>def train(): model.train() for data, target in train_loader: data, target = data.to(device).view(-1, 28 * 28), target.to(device) optimizer.zero_grad() output = model(data)</pre>
\rightarrow	27 28 29 30 31 32 33 34	<pre>def train(): model.train() for data, target in train_loader: data, target = data.to(device).view(-1, 28 * 28), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target)</pre>
\rightarrow	27 28 29 30 31 32 33 34 35	<pre>def train(): model.train() for data, target in train_loader: data, target = data.to(device).view(-1, 28 * 28), target.to(device) optimizer.zero_grad() output = model(data) loss = f.nll_loss(output, target) loss.backward()</pre>
→	27 28 29 30 31 32 33 34	<pre>def train(): model.train() for data, target in train_loader: data, target = data.to(device).view(-1, 28 * 28), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target)</pre>
→	27 28 29 30 31 32 33 34 35 36 37	<pre>def train(): model.train() for data, target in train_loader: data, target = data.to(device).view(-1, 28 * 28), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step()</pre>
\rightarrow	27 28 29 30 31 32 33 34 35 36 37 38	<pre>def train(): model.train() for data, target in train_loader: data, target = data.to(device).view(-1, 28 * 28), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() def test(): </pre>
→	27 28 29 30 31 32 33 34 35 36 37 38 39	<pre>def train(): model.train() for data, target in train_loader: data, target = data.to(device).view(-1, 28 * 28), target.to(device) optimizer.zero_grad() output = model(data) loss = f.nll_loss(output, target) loss.backward() optimizer.step() def test(): model.eval()</pre>
	27 28 29 30 31 32 33 34 35 36 37 38 39 40	<pre>def train(): model.train() for data, target in train_loader: data, target = data.to(device).view(-1, 28 * 28), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() def test(): model.eval() correct = 0 </pre>
→	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	<pre>def train(): model.train() for data, target in train_loader: data, target = data.to(device).view(-1, 28 * 28), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() def test(): model.eval() correct = 0 with torch.no_grad(): </pre>
→	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	<pre>def train(): model.train() for data, target in train_loader: data, target = data.to(device).view(-1, 28 * 28), target.to(device) optimizer.zero_grad() output = model(data) loss = f.nll_loss(output, target) loss.backward() optimizer.step() def test(): model.eval() correct = 0 with torch.no_grad(): for data, target in test_loader:</pre>
 	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	<pre>def train(): model.train() for data, target in train_loader: data, target = data.to(device).view(-1, 28 * 28), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() def test(): model.eval() correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device).view(-1, 28 * 28), target.to(device)</pre>
 	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	<pre>def train(): model.train() for data, target in train_loader: data, target = data.to(device).view(-1, 28 * 28), target.to(device) optimizer.cero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() def test(): model.eval() correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device).view(-1, 28 * 28), target.to(device) output = model(data)</pre>
\uparrow	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	<pre>def train(): model.train() for data, target in train_loader: data, target = data.to(device).view(-1, 28 * 28), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() def test(): model.eval() correct = 0 with torch.no_grad(): for data, target in test_loader: data, target i data.to(device).view(-1, 28 * 28), target.to(device) output = model(data) pred = output.max(1, keepdim=True)[1]</pre>
\uparrow	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	<pre>def train(): model.train() for data, target in train_loader: data, target = data.to(device).view(-1, 28 * 28), target.to(device) optimizer.zero_grad() output = model(data) loss = f.nll_loss(output, target) loss.backward() optimizer.step() def test(): model.eval() correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device).view(-1, 28 * 28), target.to(device) output = model(data) pred = output.max(1, keepdim=True)[1] correct + (pred == target.view_as(pred)).sum().item()</pre>
→	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	<pre>def train(): model.train() for data, target in train_loader: data, target = data.to(device).view(-1, 28 * 28), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() def test(): model.eval() correct = 0 with torch.no_grad(): for data, target in test_loader: data, target i data.to(device).view(-1, 28 * 28), target.to(device) output = model(data) pred = output.max(1, keepdim=True)[1]</pre>
\uparrow	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	<pre>def train(): model.train() for data, target in train_loader: data, target = data.to(device).view(-1, 28 * 28), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() def test(): model.eval() correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device).view(-1, 28 * 28), target.to(device) output = model(data) pred = output.max(1, keepdim=True)[1] correct += (pred == target.view_as(pred)).sum().item() print('accuracy', correct / len(test_loader.dataset)) </pre>
\uparrow	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	<pre>def train(): model.train() for data, target in train_loader: data, target = data.to(device).view(-1, 28 * 28), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() def test(): model.eval() correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device).view(-1, 28 * 28), target.to(device) output = model(data) pred = output.max(1, keepdim=True)[1] correct += (pred == target.view_as(pred)).sum().item() print('accuracy', correct / len(test_loader.dataset)) for epoch in range(100): </pre>
\rightarrow	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	<pre>def train(): model.train() for data, target in train_loader: data, target = data.to(device).view(-1, 28 * 28), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() def test(): model.eval() correct = 0 with torch.no.grad(): for data, target in test_loader: data, target = data.to(device).view(-1, 28 * 28), target.to(device) output = model(data) pred = output.max(1, keepdim=True)[1] correct + (pred == target.view_as(pred)).sum().item() print('accuracy', correct / len(test_loader.dataset)) for epoch in range(100): train() </pre>
\uparrow	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	<pre>def train(): model.train() for data, target in train_loader: data, target = data.to(device).view(-1, 28 * 28), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() def test(): model.eval() correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device).view(-1, 28 * 28), target.to(device) output = model(data) pred = output.max(1, keepdim=True)[1] correct += (pred == target.view_as(pred)).sum().item() print('accuracy', correct / len(test_loader.dataset)) for epoch in range(100): </pre>

Installation and Import

\$ pip install torch torchvision

- 1 **import torch** # Basic Tensor operations
- 2 import torch.nn as nn # Modules and layers (class style)
- 3 import torch.nn.functional as F # Modules and layers (function style)
- 4 import torch.optim as optim # Optimizers
- 5 from torch.utils.data import DataLoader
- 6 from torchvision import datasets, transforms

Data Loading

Network Architecture and Optimizer

Training

Evaluation

+ Average over multiple random seeds!

Main Loop

202		
51	for epoch in range(100):	
52	train()	
53	test()	
54		

Run!

nn.Module: Flexible Network Architecture

A container of parameters.

class MyLinear(nn.Module): 1 Nested module 2 def init (self, n in, n out): 3 super(). init () 4 self.fc = nn.Linear(n in, n out, bias=False) self.bias = nn.Parameter(torch.zeros(n out)) 5 6 7 def forward(self, x): return self.fc(x) + torch.exp(self.bias) 8

nn.Module: Flexible Network Architecture

Figure 2. Residual learning: a building block.

He, Kaiming, et al.

1	<pre>class ResBlock(nn.Module):</pre>
2	<pre>definit(self):</pre>
3	<pre>super()init()</pre>
4	<pre>self.fc1 = nn.Linear(100, 100)</pre>
5	<pre>self.fc2 = nn.Linear(100, 100)</pre>
6	
7	<pre>def forward(self, x):</pre>
8	y = self.fcl(x)
9	y = F.relu(y)
10	y = self.fc2(y)
11	return F.relu(y + x)
12	
13	<pre>net = nn.Sequential(</pre>
14	#
15	ResBlock(),
16	ResBlock(),
17	#
18)

Inplace Operations

Do NOT use inplace operations if you require grads.

Live examples!

GPU

- 1. GPU/CPU interaction is slow.
- 2. Large batch size.
 - a. Data parallel (mostly used)
 - b. Async gradient update (ASGD, etc.)
- 3. Floating point: 32-bit (float) vs 64-bit (double) vs 16-bit (half)
- 4. nvidia-smi
- 5. Async preprocessing (by CPU).

Reproducibility

- 1. Easier to debug.
- 2. Fix random seed!
 - 1 np.random.seed(seed)
 - 2 tf.set_random_seed(np.random.randint(2**30))
 - 3 torch.manual_seed(np.random.randint(2**30))
 - 4 random.seed(np.random.randint(2**30))
 - 5 torch.cuda.manual_seed_all(np.random.randint(2**30))
- 3. Make a copy of source code / command lines.

...TensorFlow

- 1. Fewer calls to **sess.run** due to large overhead in TensorFlow.
- 2. Debug?
 - a. tf.Print
 - b. sess.run('Add:0')
 - c. ...or eager mode

Overfitting

- 1. Regularization (L2, etc.);
- 2. Dropout;
- 3. Data augmentation;
- 4. Smaller network;
- 5. Early stop;
- 6. ...

Hyperparameter Tuning

- 1. Coordinate Descent;
- 2. Grid Search;
- 3. Random Search;
- 4. ...

Advanced Techniques

+ Why not storing the whole matrix?

- + Quadratic Form $f(x) \approx f(x_0) + (x x_0)^{\mathsf{T}} \nabla f(x)|_{x_0} + \frac{1}{2} (x x_0)^{\mathsf{T}} \nabla^2 f(x)|_{x_0} (x x_0)$
 - + Minimizer $x = H^{-1} \nabla f(x)|_{x_0}$
 - + Conjugate Gradient only requires to compute Hv

$$\mathbf{H}v = rac{\partial}{\partial x} ig(v^{\mathsf{T}} rac{\partial f}{\partial x} ig)$$

Fig. 4: Breakdown of GPU memory usage based on its functionality (left axis). The right axis shows the fraction of allocated memory consumed by feature maps.

From Rhu, Minsoo, et al.

https://github.com/openai/gradient-checkpointing

