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2.1 Gradient Descent

Our goal in this lecture is to explore what can proved about (non-stochastic) gradient descent (GD) when faced with
optimizing a nonconvex function f : Rd 7→ R. It is well-known that if f is strongly convex then the standard GD
iteration xk+1 = xk − η∇f(xk) converges quickly to a global optimum for appropriate choice of η. However, what
can we say about the nonconvex case? Can we even enforce that the iteration will decrease? Will it at least arrive to a
local minimum?

The answer to the first question turns out to be yes (Lemma 1). Proving the second turns out to require the introduction
of random jumps into the gradient algorithm that allow it to escape from saddle points (Theorem 1). In this lecture we’ll
show both of these facts under common regularity assumptions on f , which together show that perturbed gradient
descent (PGD) reaches an approximate second-order local minimum in polynomial time. Although these results do
not guarantee global optimality for all problems, there are multiple nonconvex settings where any second-order local
minimum is enough for global optimality, such as matrix completion or phase retrieval.

Results based on the work of Jin-Ge-Lee-Jordan (2017).

2.2 Reaching a Stationary Point

We consider functions f that satisfy the following two properties:

1. ρ-Hessian Lipschitzness: ‖∇2f(x)−∇2f(x′)‖ ≤ ρ‖x− x′‖

2. `-smoothness: ‖∇f(x)−∇f(x′)‖ ≤ `‖x− x′‖

Let’s first see that the function value decreases using GD with appropriate step-size:

Lemma 1. If η ≤ 1
` then taking a GD step from xt to xt+1 results in f(xt+1)− f(xt) ≤ − 1

2η‖xt+1 − xt‖2.

Proof. We apply the `-smoothness of f to get

f(xt+1) ≤ f(xt) +∇f(xt) · (xt+1 − xt) +
`

2
‖xt+1 − xt‖2

= f(xt)− η‖∇f(xt)‖2 +
η2`

2
‖∇f(xt)‖2

≤ f(xt)−
η

2
‖∇f(xt)‖2

= f(xt)−
1

2η
‖xt+1 − xt‖2
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Thus despite the nonconvexity we know that for nice functions we can always decrease the function value using
gradient descent. However, this doesn’t tell us what kind of stationary point (‖∇f‖ < ε for small ε) we will reach
after iterating. Assuming random initialization, with probability 1 we won’t reach a local maximum, as we can’t
descend into it and so can only get stuck there by starting there. We could also reach a local minimum, which is likely
the best we can do.

Finally, we could also reach a saddle point - a point that is maximal in some directions and minimal in others and
has zero gradient. Visualizing this problem in two dimensions, it seems trivial to escape it - just try a couple random
directions and one of them will likely lead you to descending again. However, the number of directions we’d need to
try might be exponentially large in the dimension d. A standard approach here is to compute the local Hessian ∇2f :
if there is an eigenvector with a negative eigenvalue then take that descent direction. However, second-order methods
are expensive, and we would like to show that a first-order algorithm can also succeed.

To gain an understanding of what to do next, let’s consider what happens geometrically when we reach a stationary
point. By a simple application of Cauchy-Schwarz we have the following lemma, which says that if the function value
doesn’t change after several iterations then gradient descent must be stuck in a ball of small radius:

Lemma 2. If f(xT )− f(x0) ≥ −F then ∀ t ≤ T we have ‖xt − x0‖ ≤
√

2ηTF .

Proof. We apply Cauchy-Schwarz followed by the inequality from Lemma 1:

‖xt − x0‖ =

t∑
τ=1

‖xτ − xτ−1‖ ≤

√√√√T

t∑
τ=1

‖xτ − xτ−1‖2 ≤
√
T2η(f(x0)− f(xT )) ≤

√
2ηTF

2.3 Escaping from Saddle Points

Lemma 2 shows that escaping from a saddle point will require escaping a ball of small radius in which the iteration
is stuck. As mentioned before, the second-order solution is to take the Hessian and find the descent direction via the
smallest eigenvalue. However, we can do just as well in polynomially many tries by just picking a random direction:

1. for t = 1, . . . , T :

2. if no progress in a fixed number of steps: xt ← xt + ξt for xt ∼ B0(r)

3. xt+1 ← xt − η∇f(xt)

where B0(r) is the uniform distribution over the ball of radius r. For this perturbed gradient descent (PGD) algorithm
Theorem 1 provides a guarantee for reaching an ε-approximate second order stationary point, which is defined as a
point x with ‖∇f(x)‖ ≤ ε and λmin(∇2f(x)) ≥ −√ρε (recall that when the Hessian is positive semi-definite, i.e.
has all nonnegative eigenvalues, then the stationary point is a local minimum).

Theorem 1. PGD with appropriate parameters for η, r, and the number of steps between perturbations will reach an
ε-approximate second order stationary point with 1− δ probability in Õ

(
1
ε2 log 1

δ

)
iterations.

Note: Here the parameters are η = 1
` and r = 1

200χ3
√
κ

√
ε
ρ , where κ = √̀

ερ and χ = Ω
(

log
∆fd
√
κ

ηε2δ

)
for χκ the

number of steps between perturbations and ∆f = f(x0) − f(x∗). The Õ in the statement hides log factors in 1
ε ;

specifically the number of iterations is O
(
`∆f

ε2 χ
4
)

.
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We prove this theorem by showing that when the iteration is stuck near a saddle point then the region in the ball
of sufficient radius from which regular GD won’t make progress (i.e. start decreasing again) is small, so making a
random jump will work after a small number of attempts. Combined with the fact the GD decreases even for non-
convex functions (Lemma 1) this will complete the proof.

We first show that if GD cannot escape from a point x0 near a saddle point x̃ then for large enough r0 it can escape
from all points x0 + re1, where e1 is the eigenvector of the smallest eigenvalue of ∇2f(x̃). The approach here is
essentially to take two sequences starting x0, x0 + re1 and show that after some time T the distance between them is
large, and hence at least one must have escaped from x̃.

Lemma 3. Consider x̃ such that λmin(∇2f(x̃)) ≤ −√ρε and x0, x
′
0 at most distance r away from x̃ and x′0 =

x0 + r0e1 for e1 the minimum eigendirection of ∇2f(x̃). Then for appropriate choice of T and r (depending on ε, δ,

and f ) and F = Ω̃
(
ε

3
2

)
we have

min{f(xT )− f(x0), f(x′T )− f(x′0)} ≤ −F

where {xt}Tt=1 and {x′t}Tt=1 are sequences of GD steps starting from x0 and x′0, respectively.

Proof. We prove by contradiction, using which we have by Lemma 2 that ∀ t ≤ T

max{‖xt − x̃‖, ‖x′t − x̃‖} ≤ {‖xt − x0‖+ ‖x0 − x̃‖, ‖x′t − x′0‖+ ‖x′0 − x̃‖} ≤
√

2ηTF + r

Denoting H = ∇2f(x̃) and S =
√

2ηTF + r we can track the difference wt = xt − x′t between the two GD
sequences using the gradient update:

wt+1 = wt − η [∇f(xt)−∇f(x′t)] = (I − ηH)wt − η∆twt = (I − ηH)t+1w0 − η
t∑

τ=0

(I − ηH)t−τ∆τwτ

where ∆t =
∫ t

0

[
∇2f(x′t + θ(xt − x′t))−H

]
dθ, which has norm ‖∆t‖ ≤ ρmax{‖xt − x̃‖, ‖x′t − x̃‖} ≤ ρS using

the Hessian Lipschitzness of f .

We now consider the following statement, which bounds the second quantity above in terms of the first:∥∥∥∥∥η
t−1∑
τ=0

(I − ηH)t−1−τ∆τwτ

∥∥∥∥∥ ≤ 1

2
‖(I − ηH)tw0‖

For t = 0 this is obvious. We therefore assume it holds for t′ ≤ t and prove inductively, which gives

‖w′t‖ = ‖(I − ηH)t
′
w0‖+

∥∥∥∥∥∥η
t′−1∑
τ=0

(I − ηH)t
′−1−τ∆τwτ

∥∥∥∥∥∥ ≤ 2‖(I − ηH)t
′
w0‖

Letting γ = λmin(∇2f(x̃)) we have for t < T∥∥∥∥∥η
t∑

τ=0

(I − ηH)t−τ∆τwτ

∥∥∥∥∥ ≤ ηρS
τ∑
t=0

‖(I−ηH)t−τ‖‖wτ‖ ≤ ηρ
t∑

τ=0

(1+ηγ)t‖w0‖ ≤ ηρS (t+1)‖(I−ηH)t+1w0‖

which completes the induction so long as we pick r and η such that 2ηρS T ≤ 1. Thus we finally have

‖wT ‖ ≥ ‖(I − ηH)Tw0‖ −

∥∥∥∥∥η
T−1∑
τ=0

(I − ηH)T−1−τ∆τwτ

∥∥∥∥∥ ≥ 1

2
‖(I − ηH)Tw0‖ ≥

(1 + η
√
ρε)T r0

2

which for appropriate parameters gives ‖wT ‖ ≥ 22 log 4S
r0
−1r0 ≥ 2S , a contradiction since it follows from the

assumption that max{‖xT − x̃‖, ‖x′T − x̃‖} ≤ S .
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In Lemma 3 we showed at least one of two points sufficiently separated in the minimum eigendirection at x̃will escape
a saddle point. To complete the proof of Theorem 1 we use this to show that the stuck region, i.e. the region of the ball
around a stationary point that is not approximately second order from which GD cannot escape, is small.

The proof follows the intuition resulting from the fact that taking random vector of length r in a random direction
has projection that is Gaussian with variance r2

d in any fixed direction, so in expectation a step of size r in a random
direction will have length r√

d
in any given (absolute) direction; here we are specifically interested in having a positive

projection along the descent direction given by the negative eigenvalue.

Lemma 4. Consider x̃ such that ‖∇f(x̃)‖ ≤ ε and λmin(∇2f(x̃)) ≤ −√ρε. For T let {xt}Tt=1 be a sequence of
PGD steps starting from a perturbation of radius r. Then for T, r, and F as in Lemma 3 we have with probability at
least 1− δ that

f(xT )− f(x̃) ≤ −F

2

Proof. We first decompose the function decrease into two parts:

f(xT )− f(x̃) = [f(xT )− f(x0)] + [f(x0)− f(x̃)] ≤ f(xT )− f(x0) + εr +
`r2

2

where the second inequality follows by applying the `-Lipschitzness of f and the perturbation radius r. Choosing r
such that εr + `r2

2 ≤
F
2 we define the stuck region

Xstuck =

{
x0 : x0 ∈ Bx̃(r) and f(xT )− f(x0) ≥ −F

2

}
This is the region of the ball of radius r around x̃ from which gradient descent will not escape, so we want to show
that it is small.

We set r0 = δr
√

2π
d and see from Lemma 3 that Xstuck has width at most r0 in the minimum eigenvector direction of

∇2f(x̃), which implies that Vol(Xstuck) ≤ Vol(B(d−1)
0 (r))r0. Note here the correspondence of the value of r0 with

the projection of a random vector on any given direction discussed above - we can expect to travel this much in the
right direction, but still need to calculate the volume of the stuck region because we don’t know where it is along this
line. Applying the formula for the volume of spheres in Rd and for appropriate choices of parameters δ and r we have
that

Vol(Xstuck)

Vol(B(d)
x̃ (r))

≤ r0Vol(B(d−1)
x̃ (r))

Vol(B(d)
x̃ (r))

=
r0Γ

(
d
2 + 1

)
r
√
πΓ
(
d
2 + 1

2

) ≤ r0

r
√
π

√
d+ 1

2
≤ δ

Thus picking a point at random from the ball of radius r will succeed in escaping the saddle point with probability at
least 1− δ.

The main result, Theorem 1, then follows by combining this lemma with Lemma 1.


