
Notes on Attention and the Transformer Model

1 Introduction

• Two “core” tasks: machine translation and language modeling.

• Many other tasks: part-of-speech tagging, named entity recognition, coref-
erence resolution, semantic role labeling, question/answering, textual entail-
ment, sentiment analysis, semantic parsing, etc.

• Goal today: build a language model. Why? “Representations” of the lan-
guage may be helpful for many tasks.

• Interesting questions: memory, questions/answering, reasoning/logic.

2 A Short Summary of Some Improvements

• linguistics (grammars, parse trees)→ statistical machine learning→ “deep”
models

• Brown clustering, n-gram models, IBM translation models

• Lots of work on Neural Embeddings.

• MT:

– rule-based machine translation.

– Statistical MT. IBM translation models.

– Then a series of “deep learning” based approaches:

∗ One first end-to-end models, with an “encoder-decoder” architec-
ture. “ Recurrent Continuous Translation Models.” (Kalchbrenner
& Blunsom, 2013)
∗ Seq2Seq: using sequential neural models was a good first step.

“Sequence to Sequence Learning with Neural Networks.” (Sutskever
et. al. ’14)

1

∗ A series of papers started incorporating “attention”, where one di-
rectly tries to utilize long range dependencies in the representation.
The idea is that these long range dependencies help when translat-
ing given words (the broader context is important). Now, all state
of the art methods use some form of ”attention”. The Transformer
is one of the most popular ones:
“Attention is All you Need” (Vaswani. et. al. ’17)

• Transfer learning: how can make learning easier by transferring knowledge
of one task to another? Recent exciting results showing that representations
extracted from a good language model can help with this.

– NAACL best paper:
“Deep Contextualized Word Representations” (Peters et. al. ’18)

– Another improvement with pretraining:
“BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding” (Devlin et. al. ’18)

3 Datasets, Tasks, and some (important) details

3.1 Datasets and Objectives for Language Modelling

• machine translation: translate one sentence to another sentence. BLEU score
used.

• language modeling: the goal is to learn a model over documents/ sequences,
where given a document d = w1:T (or a sequence of words/characters) our
model provides a probability P̂r(d) = P̂ r(w1:T). Note that we often specify
this joint distribution by the conditional distribution P̂r(wt+1|w≤t) where
the w’s are the words.

• The performance measure: If D is the true distribution, we measure the
quality of our model by the cross entropy rate:

CrossEnt(P̂r||D) :=
1

T
Ew1:T∼D

[
− log P̂ r(w1:T)

]
=

1

T
Ew1:T∼D

[
−
∑
t

log P̂ r(wt+1|w1:t)

]

• The perplexity is defined as exp(CrossEnt(P̂r||D)). Intuitively, think of this
as the number of plausible candidate alternative words that our model is
suggesting.

2

• Examples:

– Using a uniform distribution over m words gives a ppl of m.

– Using the (estimated) unigram distribution has ppl about 1000.

– Shannon, in his paper ””Prediction and Entropy of Printed English”
(’51), estimated 0.6 to 1.3 bits/character (using human prediction of
letters). This translates to 4.5 bits/word, using 1 bit/character and 4.5
characters/word. This gives a ppl of 24.5 = 23.

– On the PTB dataset, the best ppl is about 55 − 60 (on the validation
set). The best character level entropy rate is 1.2 bits/character. This
translates to about 77 ppl in perplexity units per word (to see this use
2(1.175 ∗ 390000/74000) since there are 390000 characters in valida-
tion set and 74000 words in the validation set).

– There are other ’codings’ like BPE (byte pair encodings) and sub-
words. One can translate perplexities between different codings, pro-
vided they can faithfully represent the document/sequence.

• Concerns: memory and long term dependencies may not be reflected in this
metric?

• Other ideas: RL, logic, meaning?

• Datasets used for language modeling:

– Penn Tree Bank (PTB): first collection. 1M words. 10K vocab sized
(based on standardization)

– WikiText-2 (2M words) and WikiText-103 (103M words). Scraped
from articles on Wikipedia passing a certain quality/length threshold,
on all topics. 300k vocab size, > 3 times each.

– Google Billion Words: web crawl, assorted topics. 1B words. 800K
vocab size.

– Books corpus: 11k public-domain novels. 1B words.

• Training:

– GPUs/TPUs are needed.

– Books/Billion words takes GPU weeks to a month to train (all standard
models). TPU a few days.

3

3.2 The details matter: training and overfitting

The details do matter a lot for training language models. In contrast, in visual
object recognition, once we move to the “Res-Net” style of architectures, training
is relatively easy, where overfitting, hyperparameter tuning, and regularization are
not major concerns. In fact, simply “early stopping” on vanilla SGD training is
often non-trivially competitive on any reasonable model.

• overfitting is very real in language models, contrast to vision.

– PTB with a trigram model (i.e. predict next word with previous two
words) has 20 train ppl (in about 4 epochs) with 150 ppl on val.

– PTB with LSTM+dropout has about 30 train ppl (in about 500 epochs)
with 60 ppl on val.

• dropout: this is needed. dropout is used everywhere in these networks. L2
regularization alone is not comparable (very brittle and even with highly
tuned it is not as good).

• (average) SGD or ADAM? Sometimes one algorithm is much better than the
other.

• exploding gradients: these occur in practice.

• vanishing gradients: lots of discussion on this. unclear what is going on.

• dynamic evaluation: keep training at test time to handle topic drifts. squeezes
about 5-10ppl on val (for PTB).

4 The Transformer

Let x be the input sequences of size T ×m, where T is the sequence length, often
of length 512 and m is the vocabulary size, often in the range of 104 to 105.

Now we will describe a one hidden layer transformer, where it will predict the
next word.

Parameters:

E ∈ Rm×dembedding

WV ,WQ,WK ∈ Rdembedding×dhidden

W1 ∈ Rdhidden×d1

W2 ∈ Rd1×dembedding

4

1. Embed the sequence:
x← xE + P

so now x is of size dembedding × T . Here, P is the positional encoding. One
common choice is:

Pt,2i = sin(t/100002i/dembedding)

Pt,2i+1 = cos(t/100002i/dembedding)

where i indexes the embedding dimension and t the sequence time. Note
that often this is a fixed choice (and not a learned parameter).

2. Compute the ’values’, ’query’, and ’key’:

V = xWV , Q = xWQ, K = xWK ,

which are of size T × dhidden.

3. Compute the attention ”weights” scheme:

h = softmax
(

QKT

√
dhidden

)
V

so h is of size T × dhidden. Importantly, note that QKT is a T × T matrix.
Here, abusing notation, the vector valued softmax(·) function is applied to
every row of the matrix QK>. Recall that the vector valued softmax(·)
function is defined so that the i-th component is:

[softmax(v)]i := exp(vi)/
∑
j

exp(vj) .

Note: each row of softmax(QKT) sums to 1. The idea is that we want a
convex combination of the columns of V.

4. The output after two transformations is then:

O = ReLu (ReLu(hW1)W2)

which is of size T × dembedding.

5. The prediction that the next word in the sequence, XT+1, is the j-th word is
then:

Õ = OE>

P̂r(XT+1 = j) = [softmax(ÕT)]j .

i.e. only the last node ÕT is used for prediction. Here, we have coupled the
embedding weights and the prediction weights, where both use the matrix
E.

5

4.1 Invariances and other observations

Define:
M = QKT

which is of size T × T .

• hidden state interpretation and ’sequential’ training/scoring: the above de-
scription is model for P̂r(wT+1|w1:T). We may be interested in the model
predicting P̂r(wt+1|w1:t) (for t < T where often T = 512), i.e. we may
want to make multiple predictions simultaneously (say for training). For
this, there is a way to use ’masking’ with an upper triangular matrix so that
(for all t ≤ T):

Pr(Xt+1 = j|w1:t) = [softmax(Õt)]j

• Suppose P = 0 (no positional encoding). The matrix M is shift invariant in
that if translate the sequence by τ then (i, j) entry gets shifted to (i+τ, j+τ)
(provided these are in bounds). Similarly, hi → hi+τ .

• Lemma. Let Q,K, V ∈ RT×dembed , and let Π be a T -by-T permutation
matrix. Then, σ(ΠQ(ΠK)T)ΠV = Πσ(QKT)V , where σ(·) is the row-
wise softmax of a matrix. In particular, suppose P = 0, then if we permute
the sequence, i.e. x 7→ Πx, then h 7→ Πh.

Proof. The LHS is σ(ΠQKTΠT)ΠV . It suffices to show that σ(ΠQKTΠT) =
Πσ(QKT)ΠT . Indeed, letting π denote the permutation specified by Π, we
have

σ(ΠQKTΠT)i,j =
e(QK

T)π(i),π(j)∑T
j′=1 e

(QKT)π(i),π(j′)

=
e(QK

T)π(i),π(j)∑T
j′=1 e

(QKT)π(i),j′
= (Πσ(QKT)ΠT)i,j .

• computation: the transformer computations are very efficient due to the man-
ner in which the matrix multiplications can be parallelized. In contrast, the
LSTM fundamentally needs a for-loop over the history. (The LSTM is a
circuit with greater depth.)

5 Acknowledgements

These notes were based on discussions with Xinyi Chen, Karthik Narashiman,
Cyril Zhang, and Yi Zhang.

6

	Introduction
	A Short Summary of Some Improvements
	Datasets, Tasks, and some (important) details
	Datasets and Objectives for Language Modelling
	The details matter: training and overfitting

	The Transformer
	Invariances and other observations

	Acknowledgements

