Notes on Attention and the Transformer Model

Introduction

e Two “core” tasks: machine translation and language modeling.

e Many other tasks: part-of-speech tagging, named entity recognition, coref-
erence resolution, semantic role labeling, question/answering, textual entail-
ment, sentiment analysis, semantic parsing, etc.

e Goal today: build a language model. Why? “Representations” of the lan-
guage may be helpful for many tasks.

o Interesting questions: memory, questions/answering, reasoning/logic.

A Short Summary of Some Improvements

linguistics (grammars, parse trees) — statistical machine learning — “deep”
models

Brown clustering, n-gram models, IBM translation models

Lots of work on Neural Embeddings.
o MT:

— rule-based machine translation.
— Statistical MT. IBM translation models.
— Then a series of “deep learning” based approaches:

* One first end-to-end models, with an “encoder-decoder” architec-
ture. ““ Recurrent Continuous Translation Models.” (Kalchbrenner
& Blunsom, 2013)

* Seq2Seq: using sequential neural models was a good first step.
“Sequence to Sequence Learning with Neural Networks.” (Sutskever
et. al. ’14)



* A series of papers started incorporating “attention”, where one di-
rectly tries to utilize long range dependencies in the representation.
The idea is that these long range dependencies help when translat-
ing given words (the broader context is important). Now, all state
of the art methods use some form of “attention”. The Transformer
is one of the most popular ones:

“Attention is All you Need” (Vaswani. et. al. *17)

Transfer learning: how can make learning easier by transferring knowledge
of one task to another? Recent exciting results showing that representations
extracted from a good language model can help with this.

— NAACL best paper:
“Deep Contextualized Word Representations” (Peters et. al. *18)

— Another improvement with pretraining:
“BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding” (Devlin et. al. *18)

3 Datasets, Tasks, and some (important) details

3.1 Datasets and Objectives for Language Modelling

machine translation: translate one sentence to another sentence. BLEU score
used.

language modeling: the goal is to learn a model over documents/ sequences,
where given a document d = wi.7 (or a sequence of words/characters) our
model provides a probability f’\r(d) = ﬁr(wlzT). Note that we often specify
this joint distribution by the conditional distribution f’\r(wt+1|w§t) where
the w’s are the words.

The performance measure: If D is the true distribution, we measure the
quality of our model by the cross entropy rate:

— 1 ~
CrossEnt(Pr||D) := walzTND [— log Pr(wlzT):|
1 ~
= TEWI:TND — zt:log Pr(th]wl;t)]

The perplexity is defined as exp(CrossEnt(f’}] |D)). Intuitively, think of this
as the number of plausible candidate alternative words that our model is
suggesting.



e Examples:

— Using a uniform distribution over m words gives a ppl of m.
— Using the (estimated) unigram distribution has ppl about 1000.

— Shannon, in his paper *’Prediction and Entropy of Printed English”
(’51), estimated 0.6 to 1.3 bits/character (using human prediction of
letters). This translates to 4.5 bits/word, using 1 bit/character and 4.5
characters/word. This gives a ppl of 245 = 23,

— On the PTB dataset, the best ppl is about 55 — 60 (on the validation
set). The best character level entropy rate is 1.2 bits/character. This
translates to about 77 ppl in perplexity units per word (to see this use
2(1.175 % 390000/74000) since there are 390000 characters in valida-
tion set and 74000 words in the validation set).

— There are other ’codings’ like BPE (byte pair encodings) and sub-
words. One can translate perplexities between different codings, pro-
vided they can faithfully represent the document/sequence.

e Concerns: memory and long term dependencies may not be reflected in this
metric?

e Other ideas: RL, logic, meaning?
e Datasets used for language modeling:
— Penn Tree Bank (PTB): first collection. 1M words. 10K vocab sized

(based on standardization)

— WikiText-2 (2M words) and WikiText-103 (103M words). Scraped
from articles on Wikipedia passing a certain quality/length threshold,
on all topics. 300k vocab size, > 3 times each.

— Google Billion Words: web crawl, assorted topics. 1B words. 800K
vocab size.

— Books corpus: 11k public-domain novels. 1B words.
e Training:

— GPUs/TPUs are needed.

— Books/Billion words takes GPU weeks to a month to train (all standard
models). TPU a few days.



3.2

The details matter: training and overfitting

The details do matter a lot for training language models. In contrast, in visual
object recognition, once we move to the “Res-Net” style of architectures, training
is relatively easy, where overfitting, hyperparameter tuning, and regularization are
not major concerns. In fact, simply “early stopping” on vanilla SGD training is
often non-trivially competitive on any reasonable model.

overfitting is very real in language models, contrast to vision.

— PTB with a trigram model (i.e. predict next word with previous two
words) has 20 train ppl (in about 4 epochs) with 150 ppl on val.

— PTB with LSTM+dropout has about 30 train ppl (in about 500 epochs)
with 60 ppl on val.

dropout: this is needed. dropout is used everywhere in these networks. L2
regularization alone is not comparable (very brittle and even with highly
tuned it is not as good).

(average) SGD or ADAM? Sometimes one algorithm is much better than the
other.

exploding gradients: these occur in practice.
vanishing gradients: lots of discussion on this. unclear what is going on.

dynamic evaluation: keep training at test time to handle topic drifts. squeezes
about 5-10ppl on val (for PTB).

4 The Transformer

Let = be the input sequences of size 7' x m, where T’ is the sequence length, often
of length 512 and m is the vocabulary size, often in the range of 10* to 10°.
Now we will describe a one hidden layer transformer, where it will predict the

next word.
Parameters:
E c Rm X dembedding
WV WQ WK c Rdembedding X dhidden
) 7
W, € TR Ahidden X d1
Wy € Rd1 X dembedding



. Embed the sequence:
rzE+ P

$0 now x is of size dempedding X 1'- Here, P is the positional encoding. One
common choice is:

Pio; = sin(t/10000% denbesdine)
Pioiy1 = cos(t/10000% dembeading)
where ¢ indexes the embedding dimension and ¢ the sequence time. Note
that often this is a fixed choice (and not a learned parameter).
. Compute the ’values’, ’query’, and "key’:
V=aWy, Q=axWq, K=xWg,
which are of size T" X dpidden-

. Compute the attention “weights” scheme:

QKT >
h =softmax | —— |V
< v/ dhidden

s0 h is of size T' X dpidden- Importantly, note that QQ K TisaT x T matrix.
Here, abusing notation, the vector valued softmax(-) function is applied to
every row of the matrix QK '. Recall that the vector valued softmax(-)
function is defined so that the i-th component is:

[softmax(v)]; := exp(v;)/ Z exp(v;) .
J

Note: each row of softmax(QK7) sums to 1. The idea is that we want a
convex combination of the columns of V.

. The output after two transformations is then:
O = Relu (ReLu(th)Wg)
which is of size T' X dembedding-

. The prediction that the next word in the sequence, X7 1, is the j-th word is
then:

O = OE'
Pr(Xry1 =j) = [softmax(Or)];.
i.e. only the last node Or is used for prediction. Here, we have coupled the

embedding weights and the prediction weights, where both use the matrix
E.



4.1 Invariances and other observations

Define:
M =QKT

which is of size T x T'.

e hidden state interpretation and ’sequential’ training/scoring: the above de-
scription is model for Pr(wr41|wy.7). We may be interested in the model
predicting ﬁ(wt+1‘w1:t) (for t < T where often T' = 512), i.e. we may
want to make multiple predictions simultaneously (say for training). For
this, there is a way to use *masking’ with an upper triangular matrix so that
(forallt <T):

Pr(X; 11 = jlwie) = [softmax(Oy)];

e Suppose P = 0 (no positional encoding). The matrix M is shift invariant in
that if translate the sequence by 7 then (i, j) entry gets shifted to (i+7, j+7)
(provided these are in bounds). Similarly, h; — h;ir.

e Lemma. Let Q, K,V € RT*dmved and let II be a T-by-T permutation
matrix. Then, o(TIQ(IIK))IIV = Ho(QK™T)V, where o(-) is the row-
wise softmax of a matrix. In particular, suppose P = 0, then if we permute
the sequence, i.e. x — Ilx, then h — I1A.

Proof. The LHS is o (TIQ K TTIT)TIV. Tt suffices to show that o (TQ KT TIT) =
Ho(QK )T, Indeed, letting 7 denote the permutation specified by II, we
have

(QE™ ) (i) = ()
S @K w.xr)

j'=

o(MQK™T); ; =

(QKT) (i) ,m(5)

e )

= = (II QKT ", ..
Z§:=1 e(QKT)w(z‘),j’ (Mo ( ) )%J

e computation: the transformer computations are very efficient due to the man-
ner in which the matrix multiplications can be parallelized. In contrast, the
LSTM fundamentally needs a for-loop over the history. (The LSTM is a
circuit with greater depth.)

5 Acknowledgements

These notes were based on discussions with Xinyi Chen, Karthik Narashiman,
Cyril Zhang, and Yi Zhang.



	Introduction
	A Short Summary of Some Improvements
	Datasets, Tasks, and some (important) details
	Datasets and Objectives for Language Modelling
	The details matter: training and overfitting

	The Transformer
	Invariances and other observations

	Acknowledgements

