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7.1 Preliminaries

Generalization theory is concerned with the ability of a set of candidate functions to perform on data.
In these notes, we will be primarily concerned with worst-case bounds where we don’t really exploit the
structure of the functions that we are considering. Such bounds typically depend on how ”big” the set of
functions we consider as candidates and how many samples we have to train with.

A quick disclaimer: generalization theory has so far had a difficult time explaining the success of deep
learning, which may require analysis that doesn’t focus on analyzing worst-case scenarios. Some progress
has been made in studying

7.1.1 Empirical Risk Minimization (ERM)

Define
D : Distribution on labelled data

S : m i.i.d samples of data points z; drawn from D
H : The set of classifiers h which we consider to explain the data
I(h, z) : Loss of classifier h € H on point z = (x,y)
Lsg, (h) : Average loss of classifier h on the sample S,,

Then, for a hypothesis h € % we have that Lg, (h) = E.g,, [I(h, z)]. Here, E,s,, means expectation over
z drawn uniformly at random from S,,. We drop the m and say S from now on, with the m being implied.
This loss Lg(h) models the steps of measuring how well our theory (here, hypothesis h) can explain the data.
A simple loss function is binary —loss 0 for correct classification and loss 1 for incorrect. In addition it may
have a term complexity(h) that measures the complexity of h. One simple such measure is the sum of the
absolute values of the numbers that describe h.

Now we seek to find a

hs = argminyLg(h)
which best explains the dataset. We denote Lg = Lg(hg) and call it the empirical loss. Thus, we call this
method Empirical Risk Minimization as it minimizes the empirical error.

However the empirical error isn’t the true error/loss that we are actually interested in.

In order to say that a classifier h is actually good, we need it to perform well on real world data. Specifically,
we are seeking to minimize Lp(h) = E..pli(h,z)]. We call this Lp(h) the true loss of the hypothesis h.
How is Lp(h) related to Lg(h) for a given h?

We define the generalization error as
Ag(h) = Lp(h) — Ls(h)
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This measures how well hypothesis h generalizes to a distribution D when its performance on a sample S
drawn from D is known.

Intuitively, if the generalization error is large then the hypothesis’s performance on sample S does not
accurately reflect the performance on the full distribution of examples, so we say it overfitted to the sample

S.

A trivial example of this is the hypothesis class that assigns the known label to all seen examples, and the
label 0 to all unseen examples. Clearly, this hypothesis class can achieve 0 loss on any dataset but won’t
perform well in the real world. Another example from folklore is how conspiracy theorist can join seemingly
random facts to explain an outcome with a theory but they are clearly not to be relied on for making good
predictions about future.

In the opposite direction, if we had a hypothesis that assigned 0’s to everything, we would have very low
generalization error, as the hypothesis would perform roughly the same on testing data as on training data
(due to both being drawn from the same distribution D). This ”set” of hypotheses would have ”0 complexity”,
and is incredibly inflexible; but it does achieve low generalization error.

Typically, when selecting a class of hypotheses H, there’s a tradeoff between how complex we want it to
be, which will drive the empirical error down, and how simple we want it to be, which will decrease the
generalization error. In practical applications, this loosely translates to having more parameters if we want
low empirical error and having fewer if we want lower generalization error.

However, in deep learning, we don’t seem to have this tradeoff. As we increase the number of parameters,
the training loss AND the testing loss (the loss on out-of-sample data) is driven lower. This brings us to one
of the fundamental mysteries of the field:

Why does overfitting not happen in deep learning?

7.2 Generalization Theory

Generalization theory tries to upper bound this error Ag(h). Sanjeev has a different way of phrasing this:
If overfitting occured and Ag(h) was high, then the hypothesis class was complex in some way. Generaliza-
tion theory formalizes what it means for classes to be complex. Sanjeev emphasizes that it is primarily a
descriptive theory that gives a name for the type of complexity. But it is not a prescriptive theory, in that
it gives no insight into how estimate this complexity.

7.2.1 Finding the generalization error

Start off by fixing a hypothesis h. Then we know from basic concentration bounds that Ep[i(h, z)] will be
close to Eg[i(h,2)] = L >..es,, W(h,zi). In fact, we know that if ||[S|| = m and [[loss| < 1, we have loosely
that

VinAs(h) ~ N(0,1)
Therefore, under some fixed hypothesis, we know that the generalization loss will be low. However, we know
that in reality, h is actually dependent on S. Now what do we do?

We use union bound. First assume that the set of models is bounded in some way (we will devise a way to
extend this to a non-finite model class later): for example, assume there are N models. We know that
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P(Ag(h) >€) <e ™

for some fixed h. Then we know that by union bound, for all hypotheses to have generalization error less
than e with probability greater than 1 — §, we must have

Ne=m <4
which gives us

I _

s ogN — log(0)
2

We typically view § as fixed. Therefore, we have that our samples must scale logarithmically with the

cardinality of the set of models.

Now, we will try to deal with a case where the set of models is not bounded. Suppose that the model is
the set of unit vectors in R in a ball of radius 1, and assume that loss(h) is Lipschitz with respect to these
vectors on a fixed sample x. Then we know that

Loss(hi(z)) — Loss(ha(x)) < L||hi(x) — ha(z)]]

This means that If we find a minimal covering of the space using balls of e radius, and h; and hy are in the
same ball (or more precisely, the vectors representing them are in the same ball), then we know that

|Ag(h1) — Ag(hs)| < €L

(up to constants, as truthfully we should be talking about balls of €/2 radius, but we keep things simple here
for illustration). Then from high dimensional geometry, we know that the number of balls needed to cover
the space of models is roughly (%)d.

Let’s return to our original bounds in the finite case. We have a finite number of balls: c(%)d; select the
centers of each of them. We know that for any function h and the function in the center of the ball that h
is in (call the center hy and the ball B),

P(3h € B st. Ag(h) > 1) < P(Ag(hy) + €L > t) = P(Ag(hy) >t — L) < e~ (teL)’m
Then, with this we can use the union bound strategy from the finite case:

1)dP(ah € B st. Ag(h) > 1) < (l)de—(t—em?m

P(Eh st.As(h) > 1) < (- €

Solving for m, we get

dlog% + log%

>
" (t —eL)?
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Which you can solve for some optimum e (the radius of the balls in this case, we abused notation a little
bit here). The optimal radius will be in terms of L. We find again that the number of samples required
to have low error w.h.p is again logarithmic in the number of functions in consideration, except this time
the ”number of functions” depends on the Lipschitz constant (the higher the Lipschitz constant, the ”more”
functions we have) and the dimension of the space.

Most complexity measures derive themselves from an idea like the one above, of discretizing the function
space (for example, VC dimension, Fat-shattering dimension, covering numbers, etc) What distinguishes
these measures from each other is (1): how useful they are and (2): how easy they are to use. However,
next we will introduce one of the most widely used measures of complexity in the next section: Rademacher
Complexity, which doesn’t use such a discretization idea.

7.2.2 Rademacher Complexity OR ”ability to correlate with random labels”

Now we turn to Rademacher complexity. Sanjeev cautions that often this topic confuses students, or falsely
impresses them. Possibly because standard accounts use the wrong definition and don’t clarify that the basic
point is rather trivial.

We first formalize the idea of the ”complexity” of a hypothesis class. To this this we use the notion of
Rademacher complexity inspired by our intuition of classifying random labels. First, let

‘H : Hypothesis class

S : 2m i.i.d samples from D

1 ie{l,.m}
g; =
-1 ie{m+1,.2m}

Now

1
Rm.p(H) =Egpm [2 sup ‘Z oih(z;)

We call R,,, p(H) the Rademacher Complezity of H on a distribution D.

Note that flipping the sign in front of the loss function turns high loss into low and vice versa, so it is
effectively like flipping the label of the underlying datapoint. Thus effectively we are flipping the labels
of half the datapoints randomly and retaining the labels of the other half. The definition requires finding
classifier h in the class that correlates well with this random relabeling; this is the usual interpretation of
Rademacher complexity.

(Sanjeev’s definition is different from the one used in literature where o; is picked randomly for each 4, but
you can convince yourself that picking exactly half -1s and half +1s isn’t too different.)

Claim 7.1: For a given loss function,Vd > 0, with probability > 1 — §, we have that the generalization error
of all hypothesis h € H, on a sample S of m i.i.d. samples drawn from a distribution D, is

As(h) < 2Ryn.p(H) <+ o (;l” (;»)

The main takeaway of this claim is that generalization error can be upper bounded by the Rademacher
complexity.

(The part in the square brackets comes from concentration bounds from the sample S being ”representative”
of the distribution and having the generalization bound hold for all h € H)
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Suppose for a random sample S the generalization error is high.consider the following thought experiment

Split .S, into sets S; and Sy randomly, with the sets being of equal size.
For a given h (picked independently of S), consider Lg, (h) and Lg, (h)

For large enough m, we have that Lg,(h) ~ Lp(h) and thus Lp(h) — Lg, (h) =~ Lg,(h) — Lg, (h) Here
So is like the ”test set” and S; is like the "training set”. Thus,

Ag(h) = Lg, (h) — Ls,(h)

But since S; and Sy are randomly picked, we can just consider S as the first half of the sample S and
then the difference reduces to

ESNDm [EZNSz [L(h7 Z)] - EZNsl [L(h7 Z)]] < ESNDm |:T}”L ‘Z Uih(zi)

1
< sup ESNDm |: ‘ O'ih Z3
} heH m Z (=)

Thus we have

1
Ag(h) < sup Eg..pm —’ o;h(z;
00 < swp B | S ouh(z)

] < Egepm {sup LIS i)

heH M

(The 2 in the end is simply because we defined Rademacher Complexity with a set of size 2m. We also
leave out the concentration term that arrives due to the approximation of the generalization error using
a training and test set. For a more formal treatment of this topic refer to the chapter in Understanding
Machine Learning: From Theory to Algorithms, Shalev-Shwartz, Shai and Ben-David, Shai)

7.2.2.1 Rademacher Complexity as practitioner intuition

Rademacher complexity seems a little mysterious at first, but if we think about it a little bit, it’s
essentially just a formalization of a practitioner’s intuition of what ”overfitting” means. When does a
practitioner believe overfitting has happened? It happens when the learner gets great training error
but also has bad testing error. Say we have a sample S7, which we trained on, and S5, which we held
out, and say we have good training error and bad testing error. Then

Eswpm [Eons,[L(h, 2)] = Ezns, [L(h, 2)]]

Will be large, since the second term is small and the first term is large. This leads to a higher
Rademacher Complexity. So we can see Rademacher Complexity, although initially seemingly arcane,
is a concept we all basically understand.
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