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Network security can be divided into two major categories, based on where
it is provided. FEndpoint security consists of security measures implemented
primarily in endpoints that wish to communicate, and do not trust the rest
of the network between them. Endpoint security is always implemented with
cryptography. Infrastructure security consists of security measures implemented
primarily by infrastructure members on behalf of the network’s administrative
authority, so that the network can provide its specified services. Infrastructure
security is usually implemented with packet filtering. The issue of privacy is
closely related to infrastructure security, because it is often concerned with
limiting the power of the infrastructure.

In principle, any security measure might be found in any network in a com-
positional architecture. In addition to explaining the basics of network security,
we will consider how security mechanisms interact with other mechanisms within
their networks and across composed networks. Our goal is to understand where
security could and should be placed in a compositional network architecture.

1 Security provided by endpoints

Currently in a separate document.

2 Security provided by infrastructure

The administrative authority (AA) of a network is responsible for protecting
infrastructure members and well-behaved user members from attackers. It is
also responsible for providing network services as specified. The infrastructure
members are controlled by the AA and trusted by it to perform security tasks
with this goal.

This section begins with an overview of the diverse goals of infrastructure
security (§2.1). Regardless of the goal, most infrastructure security is provided
by some kind of packet filtering, so in the bulk of the section §2.2 covers packet
filtering and §2.3 covers security mechanisms that are not packet filtering. In
§2.4 we return to the subject of composition, considering the interactions among
security mechanisms, composition operators, and other aspects of networking.



2.1 Goals of infrastructure security

For infrastructure security, the goals are complex, as they are contingent on
threat models as well as many assumptions and interests. This section divides
goals into two major types.

2.1.1 Preventing or mitigating resource attacks

A resource attack seeks to make its victim unavailable by exhausting its re-
sources. In networking, resource attacks are usually called flooding attacks, be-
cause they entail sending floods of packets toward the victim. Flooding attacks
are one type of denial of service (DoS) attack.

The intended victims of flooding attacks vary. If the victim is a public
server or other endpoint, the attack might seek to exhaust its compute-cycle or
memory resources. An attacker might also target some portion of a network,
seeking to exhaust the bandwidth of its links. A bandwidth attack can make
particular endpoints unreachable, and can also deny network service to many
other users whose packets pass through the congested portion of the network.
Note that some public servers such as DNS servers are part of the infrastructure
of a network, so a flooding attack on a DNS server is an attempt to deny network
service to a large number of users.

If an attacker simply sends as many packets as it can toward a victim, the
resources expended by the attacker may be similar to the resources expended
by the victim! For this reason, an effective flooding attack always employs some
form of amplification, in which the attacker’s resources are amplified to cause
the victim to expend far more resources. Here are some well-known forms of
amplification:

e A “botnet” (see sidebar) is formed by penetrating large numbers (as in
millions) of innocent-but-buggy Internet members, and installing in them
a particular kind of malware. Subsequently the attacker sends a triggering
packet to each member of the botnet, causing it to launch a security attack
unbeknownst to the machine’s owner. A flooding attack from many net-
work members, particularly members of a botnet, is called a “distributed
DoS attack.”

e An “asymmetric attack” sends requests to a server that require it to ex-
pend significant compute or storage resources for each request, so that a
relatively small amount of traffic is sufficient to launch a significant at-
tack. A typical IP example is a “SYN flood,” in which the victim receives
a flood of TCP SYN packets. Each packet causes the server to do sig-
nificant work and allocate significant resources such as buffer space. Also
in IP networks, attackers can flood DNS servers with random queries (a
“random subdomain attack”). These will force the servers to make many
more queries, because they will have no cached results to match them. In
a Web-based application network, the attacker can send particular HT TP
requests that force the Web server to do a large amount of computation.



e An attacker can send many request packets to public servers, with the
intended victim’s name as source name. This “reflection attack” causes
all the servers to send their responses to the victim. It amplifies work
because responses (received by the victim) are typically much longer than
requests (sent by the attacker).

e In an Ethernet network, a forwarder’s response to receiving a packet to
an unknown name is to broadcast it across the network. An attacker
can amplify any packet by broadcast, simply by putting in an unused
destination name.

If network infrastructure discovers where attack traffic is coming from, it can
often block traffic from the attacker to stop the attack (or, eventually, take legal
action). For this reason, attackers employ various techniques to hide themselves,
for example:

e In an IP network, a sender can simply put a false source name in the
packet header. This is necessary for reflection attacks. It cannot be used
if the attack entails a dialogue with the victim, because a false (“spoofed”)
source name would prevent the dialogue.

e With a botnet, none of the bots sending attack traffic are actually respon-
sible for the attack. Even if bots use true source names, there may be too
many of them to cut off.

e An attacker can hide by putting a smaller-than-usual number in IP pack-
ets’ “time-to-live” fields, so that the packets disappear after they have
done their damage in congesting the network, but before they reach a
place where defenses are deployed.

The examples of amplifications and hiding techniques show that flooding at-
tacks are network-dependent, because they exploit vulnerabilities in the proto-
cols of specific networks. Nevertheless, their effects are not network-dependent,
because of “fate sharing.” All the network members and applications on a
machine share the same physical resources and physical network link, so if re-
source exhaustion causes a machine to crash, thrash, or become disconnected,
all programs running on the machine will share the same fate.

Flooding attacks are a very serious problem in today’s Internet. There are
businesses that generate them for small fees. They target popular Web sites
and (especially) DNS [9]. The worst attacks are mounted by enterprises, albeit
illegal ones, that can draw on the same kind of professional knowledge, human
resources, and computer resources that legitimate businesses and governments
have. Such attackers will use many attacks and combinations of attacks at once,
and can continue them over a long period of time.

2.1.2 Blocking specific communications

Obviously, the default behavior of a network is to provide all communication ser-
vices requested of it. These services should be provided according to explicit or



implicit agreements about quality, privacy, and billing. There are, however, spe-
cific communications that a network treats differently and prejudicially. These
communications are prevented, secretly recorded, or tampered with in some
other way.

Here are some well-known examples of specific communications that may be
prevented using the mechanisms of infrastructure security:

e Email spam and voice-over-IP robocalls should not be delivered.
e Malware should not be delivered.

e Two endpoints can willingly participate in illegal communication. This
should be prevented, or in some cases recorded for further investigation
or evidence in legal proceedings (the industry term for this is “lawful
intercept”).

e Two endpoints can willingly participate in communication that violates
parental controls, which should be prevented.

e Operators of enterprise networks know which employees are using which
machines for which purposes. Often they configure their networks to pre-
vent unnecessary communication, which is probably a mistake and may
be an attack. For example, machines used by engineers should not have
access to the enterprise’s personnel database.

e Port scanning is the process of trying every TCP or UDP destination
port on an IP endpoint, to see if it will accept a session initiation. Port
scanning does not in itself do much harm, but should be prevented because
it is gathering information to be used in launching other security attacks.
(Most malware targets a known vulnerability in a specific program or
application.)

Malware is particularly dangerous when it attacks the control mechanisms
of a network, such as its directory and routing protocol, or basic utilities such
as clock synchronization and certificates. These can be straightforward DoS
attacks, or something more insidious. Attacks on directories and routing can
be parts of other attacks, because they are such fundamental building blocks
that other defenses rely on them. By subverting directory entries or forwarding
tables, attackers can draw packets with other destinations to themselves. Having
done this, the attackers can read, absorb, inject, or alter packets as they are
transmitted (these are the threats to transmission enumerated at the beginning
of §1). Attackers can also impersonate the intended destination, thus stealing
commerce or secrets.

2.1.3 Protecting freedom and privacy

Endpoint security keeps the content of network communications secret, but it
does not hide the fact that the endpoints communicated. Even with encryp-
tion, observables such as packet headers, packet size, and packet timing yield



plenty of information. These packet attributes are observable by the network
infrastructure as a matter of course, and may also be observable by third parties
who tap a wire, put a wireless receiver near a wireless transmitter, connect to a
wired broadcast medium such as as an Ethernet or cable network, or penetrate
an infrastructure machine. “Packet sniffing” software is readily available to help
them do it.

Network infrastructure can use the observable information to monitor and
censor the network activities of users. Endpoints such as Web servers can use the
information to keep track of who is accessing the servers. Third-party snoopers
can use it for personal or commercial surveillance.

All of these uses can compromise the freedom and privacy that network users
have a right to, from a legitimate or ethical viewpoint. What some national gov-
ernments consider law enforcement, others consider retaliation against political
dissidents. So there is value in building technology to help users evade censor-
ship and protect their privacy. But it is very important to note that these are
social and legal, rather than technical, distinctions. The constraints new tech-
nology is seeking to evade may be exactly the same constraints that technology
was seeking to enforce in §2.1.2. The best technology, in keeping with the “tus-
sle” philosophy of [6], is technology that accommodates all possible outcomes of
social, legal, and commercial debates.

Personal data privacy is a related issue that is much more widely discussed.
People today are concerned about the massive amounts of personal data that
is collected about them by Web sites and other applications. This data is ex-
tremely valuable for selling advertising, and can also be used for worse purposes.
Network privacy—privacy about one’s usage of a network—can contribute to
personal data privacy, but only in a limited way. For example, people can
access search engines and read Web sites anonymously, at the cost of longer de-
lays and worse search results (because they are not customized). On the other
hand, people cannot participate in social media or electronic commerce in any
meaningful way while preserving anonymity.

2.2 Security by packet filtering

Packet filtering is by far the most important mechanism for infrastructure se-
curity, and can be used to achieve goals of all types. For packet filtering, the
network infrastructure ensures that some or all packets are forwarded through
infrastructure members that perform filtering (they may also perform other
functions such as forwarding). A filter looks for packets that satisfy its filtering
criteria. On finding such packets, the filter takes some action as an exception
to or as an addition to merely forwarding them.

In this section we look at how packet filtering works in a single network—or
in a layer of homogenous bridged networks such as the Internet. In §2.4 we will
return to the compositional view, considering how packet filtering interacts with
other network mechanisms, and where it should be placed in a compositional
network architecture.



The first subsection of this section gives an overview of basic packet filtering.
Subsequent subsections explore major issues in more depth.

2.2.1 Filtering basics

The oldest filters are firewalls, dedicated so-called “appliances” positioned at or
near the edges of a network. Their filtering criteria are predicates formed by
combining mainly atomic predicates on the values of IP and IP-session-protocol
header fields. Their function is to drop disallowed packets. For example, suppose
that a firewall is intended to allow only outgoing Web accesses, which of course
require outgoing DNS queries. The direction of a packet (inbound or outbound)
can be determined from its source and destination addresses or from the link
on which it arrives. The firewall might be configured with these four rules:

1. Drop all outbound TCP packets unless they have destination port 80.

2. Drop all inbound TCP packets unless they have source port 80 and the
TCP ACK bit is set.

3. Drop all outbound UDP packets unless they have destination port 53.
4. Drop all inbound UDP packets unless they have source port 53.

In the second rule, the ACK bit indicates that this packet is an acknowledgment
of a previous packet, meaning that it is not a TCP SYN packet.

These rules are sufficient for the purpose if all packets through the firewall
obey the TCP protocol exactly, but of course an attacker may not be so polite.
A safer approach would be to make the firewall stateful by having it maintain
a table of all ongoing TCP connections. Then the second rule above would be
replaced by “Drop all inbound TCP packets unless their source and destination
addresses and ports identify them as belong to an ongoing TCP session.” State-
ful firewalls are often combined with NAT boxes, because NAT boxes sit at the
edges of networks and already maintain tables of ongoing sessions.

This brief description contains or implies answers to the basic questions one
should ask about a filtering mechanism, namely:

e What are the filtering criteria? For firewalls, configurable predicates on
IP and IP-session-protocol header fields. If the firewall is stateful, the
predicates can refer to a table of ongoing sessions.

e What actions are taken by the filters? Firewalls either drop or forward
(“accept”) packets. In addition to these actions, a filter can record pack-
ets, raise an alarm, or divert the packets for further analysis. If there is
uncertainty about the packets, a filter can rate-limit them or downgrade
their forwarding priority rather than dropping them. Rather than drop-
ping session-initiation requests, a filter could reply to them with refusals,
which would discourage retries. A refusal to a TCP SYN (request) is a
TCP RST (reset). A refusal to an HTTP request is an error code.



e Which packets are filtered, which filter do they go to, and how are they
steered into their filter? Firewalls are located at network edges, where
every packet going into or out of the network necessarily passes through
them. If a firewall is stateful, it is crucial that all packets of a session pass
through the same firewall. This property is called “session affinity.”

e How are the filters themselves, as potential traffic bottlenecks, protected
from DoS attacks? Often firewalls are large machines, with capacity suf-
ficient to handle all their network’s traffic, even during a flooding attack.
Because these firewalls are dedicated machines, without many programs
or control interfaces, they cannot easily be penetrated by malware.

Stateless firewall functionality is sometimes implemented in forwarders rather
than separate appliances, in which case the rules are called “access control lists.”

For more sophisticated filtering (see §2.2.2), networks often use commer-
cial products known as “intrusion detection systems” and “intrusion prevention
systems.” The difference is that detection systems only raise alarms, while
prevention systems automatically take action against suspected attacks, such
as dropping or rate-limiting packets. It might seem that automatic action is
always better (it is certainly faster), but there are good reasons for keeping op-
erators and network customers in the decision loop. If a suspected attack is a
false positive, or even if its source is uncertain, much legitimate traffic may be
dropped. If an operator deploys additional resources on behalf of an enterprise
customer that is under attack, the customer will have to pay for them. The de-
fense against a suspected attack may even be a counter-attack, which is wrong
and even dangerous (in a military setting) if not well-justified.

2.2.2 Filtering criteria

Filtering criteria choose the packets on which a filter takes action. The problem
of finding filtering criteria is somewhat different for the two major purposes of
filtering.

If the purpose of filtering is to prevent or spy on specific communications,
then the filtering criteria must describe the specific communications. However,
many of these communications are not as specific as we would like. “Signature-
based” filters such as spam filters, virus scanners, and parental filters look for
keywords, sometimes keywords in specific positions, and other known attack
patterns. They can also be stateful, and check whether protocols are being
followed. These filters can be valuable commercial products because of the
intellectual property in their filtering criteria. Like all security software, to
be effective, they must be kept up-to-date. Even so, they cannot detect new
attacks, and may be fooled by minor variations on old attacks. For one example,
the attacker might fragment packets to hide their resemblance to the signature.
For another example, a keyword in email text can be spelled creatively.

One advantage enjoyed by filters for preventing specific IP communications
is that attackers cannot usually hide by spoofing. If the attack requires com-
munication in both directions, then the attacker’s source name must usually



be correct. (In more sophisticated attacks, the attacker can give a false source
name and still receive return packets through route hijacking (§2.3.3) or packet
sniffing.) Emails (in email application networks) are always one-way, however,
so source names can be false.

If the purpose of IP filtering is to prevent flooding DoS attacks, it must
contend with the fact that packet source names can be false. On the other hand,
at least having a false source name is a straightforward packet-filtering criterion,
if the filter can detect it. “Ingress filters” in IP networks check incoming packets
to see if the prefixes of their source names match expectations. “Unicast reverse
path forwarding (URPF)” in a forwarder accepts a packet’s source name as valid
only if its forwarding table specifies forwarding to the source name on the same
two-way link on which the packet arrived. Unfortunately URPF cannot be used
in the core (high-speed backbone) of a large network, because routes there are
not necessarily symmetric. The Accountable Internet (see sidebar) is a network
design with the principal goal of filtering out spoofed packets.

With the possible exception of their source names, the packets of a flooding
DoS attack will look benign, so filtering criteria are computed by statistical
algorithms. These algorithms look for anomalies, i.e., variations from normal
patterns of bandwidth use, protocol use, and other traffic attributes. Needless to
say, there is a great danger of detecting too many anomalies (“false positives”),
in which case many legitimate packets may be filtered out. Also needless to say,
there are widespread hopes that machine learning will improve the precision of
anomaly detection.

In general, the quality of filtering criteria is a limiting factor in the use of
filtering to handle IP flooding attacks. The mechanisms for hiding attackers
(§2.1.1) are effective. Almost all filtering works on the outermost IP header,
regarding the rest of the packet as payload, so layering and encryption in the
payload can conceal the true nature of the traffic. Because of these limitations,
much of the research on DoS attacks aims to make filtering criteria precise by
recognizing certain packets as desirable and rejecting all other packets. We’ll
call this approach “positive filtering” because the default action on a packet is to
drop it, and matching a filtering criterion allows the packet to be delivered. In
addition to precision, positive filtering has the advantage of preventing flooding
DoS attacks, rather than reacting to them well after they have begun. Positive
filtering is complex enough to deserve a section of its own.

2.2.3 Positive filtering

At least one kind of positive filtering is familiar and normal. Some email filters
drop emails unless their source name is already a known correspondent of the
destination.

A relatively simple kind of positive filtering is performed in a private IP
network with software-defined control, as in Ethane [5]. An Ethane controller is
a central network member with very complete knowledge of its network, espe-
cially the user members. For each user member the controller knows the IP and
MAC addresses, the forwarder port to which the member is directly attached,



and the user of its machine. It also has policies governing which user members
can reach which user members, the session protocols they can employ, and the
middleboxes the sessions must pass through. When an Ethane forwarder re-
ceives the first packet of a session, it sends the packet to the controller, which
uses its knowledge and policies to choose to either allow or disallow the session.
If the session is allowed, the controller installs a tuple for it in the forwarding
table of every forwarder in the path of the session.

Other proposals for positive filtering, including TVA [23], apply to mixed
public-and-private IP networks. In this section we will concentrate on two pro-
posals that together fit into an interesting and useful pattern.

Concerning Secure Overlay Services (SOS) [15] and Mayday [1], there are
two important functional questions:

e What are the criteria for allowing or disallowing sessions?
e Where and how are good packets recognized and bad packets dropped?

With respect to criteria, SOS is intended for use during an emergency sit-
uation, when networks are so congested that even benign ordinary traffic must
be dropped. The only allowed packets to a given destination come from a few
pre-configured sources used by emergency responders. Mayday is a generaliza-
tion of SOS providing for any approval criteria implemented by a certain class
of network members (see below).

For recognizing good packets and filtering out all others, both SOS and
Mayday rely on an overlay IP network of trusted, cooperating members—in a
particular deployment instance, these members might not belong to the AA of
a particular network, but instead might belong to an enterprise or peer group
whose machines cooperate for mutual protection. In addition to the overlay
network, a potential target must be surrounded in the Internet underlay by a
ring of ordinary packet filters. These ordinary filters, such as firewalls or filtering
forwarders, must have the capacity to handle flooding DoS attacks, and must
be configurable by overlay machines or by people representing the overlay. The
general idea is that good packets are transmitted to the target through the
overlay, and the links of the overlay are implemented by the Internet underlay.
The packet filters in the underlay can recognize which packets are also traveling
through the overlay, and drop all other packets.

Figure 1 is a graph view of the physical arrangement. All nodes are members
of Internet networks, either the protected target’s network or other networks
bridged to it. Note that all Internet paths to the target go through the filters.
Note also that overlay machines can be located anywhere, close to the target or
far away from it.

In designing an overlay network for positive filtering, there are three impor-
tant choices to be made. SOS makes specific choices, while the Mayday paper
points out that there are other choices, and evaluates some combinations of
them. We now explain the three choices.

Source authentication. This choice concerns how an endpoint authenticates
itself to the overlay as a source of legimate packets. In SOS the source is an
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Figure 1: A graph view of Internet members involved in overlay-based positive
filtering. The members named in red are on overlay machines, i.e., their ma-
chines also have interfaces to the overlay network. The paths in red are the only
Internet paths to the protected target.

overlay member, i.e., it has special software. It creates a secure link to an
overlay ingress member, using IPsec with endpoint authentication. SOS source
members know the Internet names of many ingress members, well-distributed
so that they cannot all be overwhelmed by flooding attacks.

Mayday emphasizes an option that is architecturally more complex, but has
broader applicability because the source need not be an overlay member (both
Figures 1 and 2 depict this option). In this option packets from a source to
target name 7T are routed to some proxy that is an ingress member of the overlay.
The proxy accepts the TCP session, and can then authenticate the source by
asking for a user name and password associated with the target service. If
the source is authentic, the proxy makes a TCP session through the overlay
to the target; these two TCP sessions then become two parts of a compound
application session.

Lightweight authenticator. Figure 2 is a session view of allowed access to
protected target T. The last overlay hop between an egress member of the
overlay and the target is implemented by an underlay path that goes through
a filter. The lightweight authenticator is the attribute of underlay packets from
egress member to target that causes the packet filter to recognize them as over-
lay packets and allow them to pass. The simplest lightweight authenticator is
the IP name of the egress member (here E) in the source name of a packet;
this is what SOS uses. Other authenticators proposed by Mayday include the
destination port, destination name, and other header fields whose contents can
be manipulated by the egress member.

The critical property of a lightweight authenticator is that it must be a
secret—if attackers knew it, they could simply send underlay packets that match
it. You might think that the destination name is the worst possible authenti-
cator, but it can be a good one if the underlay name of the protected target is
different from its overlay name, as shown in Figure 2, and if it can be changed
easily and frequently by local control in the target’s network.
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Figure 2: A session view of overlay-based positive filtering, illustrating the fol-
lowing options: source is not an overlay member, target has different names in
overlay and underlay, routing is singly-indirect.

Overlay routing. The identities of authenticating ingress nodes are fairly
public, as all packets to T" must be routed to or destined for them. The purpose
of having a full overlay network with its own routing (as opposed to having
ingress nodes only) is to vary and hide the paths of packets between ingress
members and the target. This keeps attackers from flooding the paths to the
target rather than the target itself. It also keeps the identities of egress nodes
secret, which is indispensable if the lightweight authenticator is the name of
an egress node. SOS uses egress names as authenticators, and also employs
complex routing through the overlay based on distributed hash tables. The
paths are long and introduce considerable delay.

Mayday takes the position that effective overlay routing can be much sim-
pler, with options including no routing at all (ingress and egress nodes are the
same), and singly-indirect routing (one hop between ingress and egress nodes,
as in Figure 2). The Mayday paper reports on analysis showing that certain
combinations of overlay routing and lightweight authenticator provide “best
cases” for trade-offs among performance and security. For example, designers
who want moderate levels of both performance and security should use singly-
indirect routing with any authenticator other than source name.

2.2.4 Filtering resources

When filtering is used as a defense against flooding attacks, the filters and the
network paths to them must have sufficient resources to handle all of the attack
traffic. Thus resources and scalability are important aspects of the design of
packet-filtering mechanisms.
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In a layer of homogenous bridged networks such as the Internet, we can
visualize the graph of all network paths leading from sources to an attack target
as a giant tree. Filters should be arranged so that there is a filter (or sequence
of them, if filtering is pipelined) on each path. Considering this tree, there are
general trade-offs between placing filters closer to the target or farther from the
target. The advantages of placing filters closer to the target are:

e The root of the tree is at the target. Obviously, there are fewer paths
to cover close to the target, and fewer packets overall for the filters to
process.

e Usually the responsibility for protecting the target lies with the AA of the
target’s network, so the AA has an incentive for deploying resources in its
network, close to the target.

The advantages of placing filters farther from the target are:

o If filtering is farther from the target, the damage done by attack traffic is
lessened, because attack traffic is carried for shorter distances along fewer
links. Note that the damage of a flooding attack is not limited to the
intended target, because traffic to many other destinations will also suffer
because of congested links.

o If filtering is farther from the target, it is closer to the sources of attack
traffic, and may have more information about it. For example, an ingress
filter in an IP access network knows the prefix of all genuine source names,
so it can filter out packets with false source names. The access network
sees all of a suspected source’s traffic, so attack patterns are more likely
to be detectable. An access network may also know more about the type
and reputation of its sources (device type is relevant because some mobile
operating systems and vendor hardware are more easily penetrated than
others). More precise filtering means less collateral damage.

e When there is a major flooding attack, it is usually focused on a small
number of targets. Very often, the attack packets are coming from a
botnet, with a large number of sources well-distributed across the public
Internet. So the total amount of available filtering resources near sources
greatly exceeds the total amount of resources available near targets.

A third option, filtering in the topological core of the network, is never used
because the core is a region of high-speed links and high-speed routers handling
large flows of packets. Routers would have to filter at line rate, based on fil-
tering rules stored in expensive Ternary Content-Addressable Memory, and the
hardware’s capacity to store rules would not be adequate for the number of rules
required.

Unfortunately, the many advantages of filtering near sources are balanced
by two major disadvantages:
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e Networks may not have sufficient incentive to use their resources to pro-
tect targets that are remote from them. (However, this is making a big
assumption, that topologically distant networks are also distant adminis-
tratively. If the administrative distance is small, then this disadvantage
disappears.)

e Even if source networks are willing to cooperate with target networks,
the necessary coordination is not easy. Infrastructure machines such as
routers, controllers, and policy servers must cooperate on attack diagnosis
as well as filtering. (Before the recent advent of programmable routers,
this would not even have been possible.) Control communication between
networks must be secure, because attackers could abuse it. Yet ordinary
endpoint security may not be applicable, because the networks do not
know the identities of forwarders in other networks, nor do they know
which forwarder is on which path. Finally, even when communicating cor-
rectly with another network, the target network cannot necessarily trust
it.

There are proposed solutions to all the problems of incentives and control [3,
7, 19, 22], but they are not simple. Historically, cooperation between networks
with different AAs has been scarce [10].

The proposals for moving filtering toward the sources of attack traffic date
from the early 2000s. In the 2010s cloud computing has advanced so far that
most filtering is performed in clouds on behalf of target networks. In clouds
the filters are virtual machines, and the number of filters expands and contracts
with fluctuations in load. It is also practical to employ sequenced filters, direct-
ing packets that early filters find suspicious to later filters with more detailed
screening.

2.2.5 Proxies

Proxies, and compound sessions formed by these proxies, are commonly used to
evade packet filtering. This works because the header fields of the packets in the
component simple sessions of a compound session can be completely different.
Although joinboxes can also form compound sessions, they are not endpoints
of session protocols, and therefore cannot do all the manipulations we will see
proxies doing in the remainder of this session.

Perhaps the oldest example of such a proxy is an “application gateway,”
which is installed in a private IP network for the benign purpose of evading
the too-simple filtering imposed by the firewall. For example, an enterprise
firewall may block all outgoing sessions except Web accesses. However, the
enterprise may also wish to allow outgoing sessions of another kind, when they
are initiated by specific users. The firewall cannot enforce this policy because
it does not know the mapping between internal IP names and users (and the
mapping may not even be static).

An application gateway for the application, for instance Telnet, solves this
problem. To use it, a user initiates a Telnet session to the application gateway
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inside the enterprise network. By means of an extension to the Telnet protocol,
the user supplies a password to authenticate himself to the proxy, and also the
name of the real Telnet destination. The proxy initiates a Telnet session to the
real destination outside the enterprise network, and joins the two simple sessions
in a compound session. The enterprise firewall allows outgoing Telnet sessions
from the application gateway only.

Proxies are the principal tool for providing users with privacy, anonymity,
and the ability to evade censorship. We will show how this works in three stages.

The first stage is simplest. If, for example, a user wishes to access a Web
server with some privacy and anonymity, the user’s browser requests from the
IP interface on the user machine a “proxied TLS” session with a friendly proxy
outside his home network (Figure 3). A “proxied TLS” session is just like a
normal TLS session except that: (i) instead of looking up the domain name
dangerous.com and using its IP address as the destination of the session, the
IP interface uses the proxy’s address as the destination of the session; (ii) it
expects and verifies the certificate of the proxy, not the Web site.

user’s server'’s

machine machine
Y
Web-based HTTP session h 4
application ‘dangerous.
[browser] >
network O dynamic link com
src = user, dst = proxy src = proxy, dst = server
r-- - - --==-"-"""Frr-"-""—-"=-=--= s T T T T TS T TS TS T s
proxied ) A TLS session A4
TLS session
user’s IP other IP
network networks

Figure 3: A proxied TLS session protects the user’s privacy in his home network,
and anonymity at the Web server.

After the proxied TLS session is set up, it appears perfectly normal to the
user’s machine. The proxy, however, decrypts the HTTP request, and uses it
to make another TLS session with the actual server. After this the proxy relays
packets between the two components of the compound TLS session. Because of
the compound session, the IP network of the user does not know what the user
is connected with, and the final destination does not know who the user is.

One remaining disadvantage of the first stage is that the user has no privacy
from the proxy. The other disadvantages come from the fact that the addresses
of helpful proxies must be publicly available (so users can find them) which
means that they are available to the user’s adversaries as well. Most importantly,
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if the user’s IP network is censoring the network activity of its users, it can
simply block packets addressed to external public proxies.

The second stage of proxy use is intended to evade censorship in a network,
such as a national ISP, that seeks to limit or spy on the network activity of its
users. There are several similar proposals [11, 12, 21], all using proxies, but in
a way that still works even if the censoring network is blocking access to known
proxies. As a representative of these proposals, we will present Cirripede [11].

As shown in Figure 4, the ISP of the Cirripede client is filtering out packets
from the client to certain Web servers, represented here by the “covert desti-
nation.” The client cannot evade this censorship by using a false source name,
because then replies from the Web server will not be delivered to the client (also,
the network may be blocking everyone’s access to the site).

1. subsession between
censoring friendly proxy and overt overt
-7 destination

network network ..

Cirripede \ . _ . _ .. ((censoring \_ _\ __ _[. (deflecting\_ . _ .. ... -t
client el

~ o "/ covert
) =M\ destination
2. subsession between

roxy and covert
> proxy

subsession between client and proxy

Figure 4: Subsessions of a session between a Cirripede client and a covert des-
tination. In the subsession on the left, names in the IP header are those of the
client and overt destination; packets from the client are deflected to the proxy
as an exception to normal forwarding.

For Cirripede to work, there must be a network operated by a friendly AA on
the path between the client’s ISP and many destinations, including the covert
destination. The client must first signal to the friendly network that it wishes
to use Cirripede for a time interval. To register as a Cirripede client, it must
use a “covert channel” of communication, one that its ISP is unlikely to rec-
ognize. Covert channels are constructed from attributes of a packet stream
that the sender can control and observers of the packet stream are unlikely to
notice, including packet timing, order of TCP packets, unused packet fields,
and pseudo-random packet fields. (Covert channels are always low-bandwidth,
and vulnerable to detection if popular, which is why they must be used spar-
ingly.) To signal covertly that it wishes to register with the friendly network,
the Cirripede client puts a secret number in the pseudo-random initial-sequence-
number field of a TCP SYN packet. The packet is intercepted by a router in the
friendly network on the path from the client, and converted to a registration
for the client. As a result of the registration, a special “deflecting table” in
friendly routers over-rides normal routing. When subsequent packets from the
client reach these routers, they are sent to a Cirripede proxy.

The Cirripede proxy will help the client access the covert destination, but
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it takes a complex session protocol to do this safely. First, the client requests a
TLS session with an overt destination—one that the client is allowed to reach—
and completes a TLS handshake with it. During this phase the proxy is present
in the path but takes no active part. Even if the censoring filter is monitoring
every packet of the TLS handshake, it will see nothing out of the ordinary. After
the TLS handshake all packets to and from the client will be encrypted, so their
content need not be constrained. During the entire TLS session, the packets
seen by the filter will have the overt destination in their source or destination
field.

Next, the proxy will end the session between itself and the overt destination,
and inform the client that the proxy is in the path of the session. The client
will respond by sending it the name of the covert destination it actually wishes
to reach. The proxy initiates a TLS session to the covert destination, and
afterwards relays packets between the client and covert destination.

Just as the censoring authorities could learn about friendly proxies and
block their IP addresses, could the authorities learn about the helpfulness of
the friendly network and refuse to bridge with it? The assumption behind Cir-
ripede is that the friendly network is on the censoring network’s path to large
parts of the Internet. The prediction is that the censoring network will not cut
it off, because the effects would be too public and too draconian.

The remaining vulnerabilities are that the user still has no privacy from
the proxy, and that that Web site or other destination knows that the user is
connecting to it through a proxy (again, because proxies are publicly known).
The latter issue will be discussed in §2.4.3. Privacy from the proxies can be
obtained by using the Tor service.

Tor [8] is a well-known public service for providing users with private, anony-
mous sessions to Web sites and other services. Volunteers worldwide lend their
machines’ resources to act as Tor proxies. Tor proxies form an overlay network
with its own randomized routing (as in §2.2.3) to carry the users’ traffic. Most
importantly, the initiator of a Tor session chooses proxies for the session, and
each Tor proxy has a public key. Packets of the session are encrypted as many
times as there are proxies, working from the key of the last proxy to the key
of the first. Each proxy decrypts one layer of encryption, so that it knows the
names of adjacent proxies in the chain, but nothing else.

2.3 Security that is not packet filtering

The majority of infrastructure security is implemented with packet filtering,
which is a general mechanism that can be used for many purposes. In this
section we review a few techniques for infrastructure security that are not packet
filtering.

2.3.1 Resource replication

Current network technology, has made it both feasible and popular to defend
services against resource attacks by replication of resources, so that there are
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enough resources to withstand attacks. This is easiest in a cloud, where a service
under attack can quickly be granted more virtual machines.

It is even better if resource replicas are geographically distributed, so that
some replicas can be reached when other parts of the network are too congested.
Because attacks on DNS servers are so common and damaging, it is especially
important to have distributed authoritative DNS servers for popular domain
names. Queries are distributed across the replicas by means of DNS anycast
or IP anycast. If there are five replicas sharing the load and one has been
overwhelmed by an attack, DNS or IP anycast may not be dynamic enough to
redirect queries away from the failed replica, but at least queries directed by
anycast to the other four will succeed.

Resource replication works best when replicated data is fairly static, and it is
not feasible when queries update the data. (Note that this remark is specific to
the context of replicating data as a defense against flooding attacks in the public
Internet. In more private distributed systems, data is frequently replicated for
reliability, and there are many protocols for making data that has been updated
at a single replica consistent across all replicas.) In cases where data is dynamic
or updated by queries, it can be distributed across multiple sites by sharding,
e.g., by partitioning the keys of a key-value store across sites. This will increase
the total resources available, and also the expected availability of an arbitrary
key.

2.3.2 Reduction of amplification

Another defense against resource attacks is to reduce the amplification factor on
which they depend. For example, It has become common for servers to defend
themselves against SYN floods (§2.1.1) with “SYN cookies.” In this defense,
the server returns a SYN+ACK packet with a specially-coded initial sequence
number (the cookie). It then discards the SYN, using no additional resources
for it. If the SYN was an attack, it has not been amplified. If the SYN was
legitimate, on the other hand, it will elicit an ACK from the initiator with the
same initial sequence number incremented by one. By decoding the sequence
number, the server can reconstruct the original SYN and then set up a real TCP
connection.

A flood of DNS queries is amplified when servers query other servers. A very
effective defense against these attacks is longer times-to-live for cache entries,
perhaps 30 minutes, in recursive and local DNS servers [20]. If local entries
are cached longer, there will be fewer queries and retries made to authoritative
servers. There are many good reasons for DNS cache entries with short times-
to-live, but these can be changed as an adaptive measure during attacks. The
same idea would work for many other services with caching.

2.3.3 Endpoint security for control protocols

Control protocols are used to maintain and distribute network state. It should
be no surprise that unauthorized update or distribution of network state can be
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used for malicious purposes. The most well-known attack of this kind is “BGP
hijacking,” in which an attacker advertises an IP prefix it does not own as a
way of drawing packets for that prefix toward itself.

The defense for a control protocol is endpoint security. For instance, Bor-
der Gateway Protocol Security is a security extension to BGP that provides
cryptographic verification of messages advertising routes. Similarly, Domain
Name System Security Extensions protect DNS lookups by returning records
with digital signatures.

The use of TLS or ESP is not always possible for control protocols. An
endpoint may not have a certificate or other credential to prove its identity.
The protocol might require high-speed, high-volume operation. Or, the protocol
might simply be too old to incorporate endpoint security, even if it is feasible.

In these cases there are lighter-weight measures that can help. Network
members that make requests should keep track of their pending requests and
not accept unsolicited replies. Replies should be checked for credibility, when-
ever that is possible. Most effectively, a network member can include a nonce or
random field value in a session-setup message or request. Subsequent messages
of the protocol must have the same nonce or random value, so that no attacker
without access to the previous messages of the session can send messages pur-
porting to be part of the session. Without the nonce, an attacker could do
something to trigger a query, then send a spurious answer to the query.

2.3.4 Very special-purpose techniques

In special cases, undesirable communication can be prevented by making a user
member unreachable, by altering either the network’s directory or the network’s
forwarding. For example, an illegal gambling site can be made unreachable in
the public Internet—at least to those who do not know its IP address—by
removing or falsifying its DNS entry. This is a special case because, although
the gambling site is connected to the public Internet, officials want to prevent
all communication with it.

2.4 Compositional infrastructure security

This section is concerned with the interactions among infrastructure security in
single networks, composition operators, and other aspects of networking.

2.4.1 Bridging

When networks are bridged, they have either shared links or shared members.
If a member is shared it belongs to both networks, and may play a different
role in each. For instance, a gateway to a private network may be shared
between the private network and its ISP’s network; in the private network it is
an infrastructure member, while in the ISP’s network it is a user.

For infrastructure security, the most prominent threats occur among the
many bridged networks of the public Internet. There is much less concern about
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the security of Ethernet LANS, particularly wired Ethernets, because they are
usually isolated—their member machines usually connect to the outside world
through IP networks at a higher level. Wired Ethernets can be attacked, but
the attackers must have some kind of physical access to the machines connected
to them [17]. In addition to attacks by insiders, a visitor to an enterprise might
plug into an unused wall socket or switch a cable from one machine to another.
A determined attacker might even even drop a memory stick with a company’s
logo in the company’s parking lot; someone who finds it might plug it into a
company computer to see who it belongs to.

2.4.2 Layering

A machine could be a member of several independent networks and, because of
fate sharing, be attacked through any of them. Most often, however, each packet
arriving at a machine is being transmitted through multiple layered networks
simultaneously, for example an Ethernet LAN, an IP network, and an applica-
tion network. Amplification of a flooding attack, or damaging processing of a
malware packet, can take place at any of these levels. Filtering can also take
place at any of these levels.

First we consider the networks layered below the filtering network and im-
plementing its virtual links. If the filtering is to achieve what we assume it is
achieving, then for all links on paths between a filter and a protected target,
it must be true that no packet is received on the link that was not sent on
the link. In other words, lower-level networks do not inject packets into the
implementation of the link.

This might seem like a fanciful concern, but it is very real in clouds. The
filtering network might be a tenant of a multi-tenant cloud, in which case its links
are virtual channels implemented by sessions in a lower-level cloud network that
is shared among tenants. If the cloud network does not isolate tenants properly,
then cloud-network members of another tenant might pretend to belong to the
filtering network. They might insert packets into filtering-network sessions in
the cloud network, or manipulate packets in them before they are delivered
to the session endpoint. Even if the other tenant is an honest enterprise, its
virtual machines may have been penetrated by attackers (which is easy to do,
see the sidebar on botnets). Even though the AA of the filtering network is
associated with the tenant, the integrity of its links is the responsibility of
the cloud network, whose AA is the cloud provider. In another scenario, a
penetrated Ethernet can also inject packets into the links of networks layered
on it [17].

It is common to deploy IP-based intrusion detection systems that look into
the payloads of IP packets for attack signatures at higher levels, for example
signs of malware at particular locations in the payloads. These systems have the
limitation that they are assuming a known and fixed layer architecture between
themselves and the endpoints they are protecting.

In many ways it makes more sense to include filtering middleboxes in ses-
sion paths in each network separately, thus making no assumptions about which
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other networks a packet is traveling through. A network-specific filter, partic-
ularly for an application network, can rely on far more knowledge of the ap-
plication and network members. Today virtualization technology makes this
approach far more practical than it was in the past. Of course, higher-level
filtering can augment lower-level filtering, but cannot replace it.

The overlay architectures in §2.2.3 offer another attractive possibility. If an
endpoint machine should receive only packets transmitted through a higher-level
(overlay) network, then the overlay can filter, and the implementation underlay
network can be configured to allow only those underlay packets that are also
overlay packets.

2.4.3 Middleboxes

An important interaction between endpoint security and infrastructure security
has already been covered. Packet filters are middleboxes, so all the observations
about encryption and middleboxes (§1) are relevant.

In general, a middlebox can alter a packet stream that passes through it. For
this reason, only trusted middleboxes should be placed in packet paths between
a packet filter and a target it is intended to protect.

The interaction between filtering and proxies is of paramount importance.
With proxies, a session can consist of a chain of multiple simple sessions, each
of which has completely different headers. As we have seen, if the purpose of
filtering is to prevent flooding attacks, then there is some flexibility as to where
the filtering can be located. So effective filtering must be located where an
attacker’s sessions can be identified by the headers of the simple sessions in that
locality.

If the purpose of filtering is to block or spy on specific communications,
then it can be evaded by making the simple session of a compound session
look innocuous in the blocking AA’s network. This statement covers not just
evasion of censorship in a user’s access network, but also supposed spying by the
proxies themselves (one of the threats addressed by Tor). The AA of a user’s
access network can exercise some control over this by choosing not to bridge
with networks harboring proxies, but this mechanism of control is limited by
the AA’s need to maintain connectivity with all or most of the global Internet,
with reasonable performance and cost.

Unfortunately the Tor mechanism for privacy has one deficiency with no
current solution. At the far end of the session, the acceptor of the session can
know that Tor is being used, because there are readily accessible and regularly
updated lists of Tor nodes (necessary so that prospective users can find them).
Fraudsters, spammers, and other criminals are big users of Tor, along with
law-abiding people in need of privacy. Consequently an increasing number of
services are rejecting or otherwise discriminating against Tor users [16].
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2.4.4 Routing

Wide-area routing frequently creates different paths for packets traveling in
different directions between the same two endpoints. Even packets traveling in
the same direction may be spread across multiple paths because there has been
a failure in one of the paths, or a need for better load-balancing.

Thus routing requirements can conflict with the need for session affinity
(§2.2.1), d.e., with the need to have all packets of a session pass through the
same filter. These needs are easiest to reconcile within a cloud, where paths
come together and there can be a mechanism for sending all packets of a session
to the same virtual instance of a filter.

2.4.5 Session protocols

SYN cookies (§2.3.2) are very clever, but like most clever solutions, they come
with hidden limitations. A server using SYN cookies effectively drops all op-
tional information in TCP SYN packets, which means that any network ca-
pability or feature relying on extensions to TCP is disabled. Note that many
servers using SYN cookies are Web servers, and many new features relying on
extensions to TCP (such as Multipath TCP, just to name one example) have
improved Web access as a major use case. These issues are also discussed in the
chapter on Session Protocols.

There is another defense against SYN floods that is less efficient than SYN
cookies, but comes with fewer limitations. This defense uses a proxy in the path
to a Web server that stores and responds to SYN packets, but does nothing else
with a SYN packet until it receives the ACK that completes the handshake. On
receiving the ACK, the proxy forms a new session by sending the SYN to the
server, and subsequently acts as a transparent proxy between the two sessions.
If the proxy does not receive a timely ACK, then the SYN packet was part of
an attack or the client has failed, so the proxy drops it.

3 The verification challenge

There is growing interest in verifying the correctness of networks, most impor-
tantly with respect to security. For example, there has been significant progress
on verifying the forwarding tables of an IP network—or the algorithm that com-
putes them—to ensure that they satisfy reachability and access-control policies
[2, 4, 13, 14, 18].

It should be abundantly clear from this chapter, particularly from the sec-
tions covering the interactions among composition operators, security mecha-
nisms, and diverse network mechanisms for requirements other than security,
that this work is necessary but not sufficient.

If this is not convincing enough, one need only look at the hundreds of new
papers on security published every year. Each responds to a specific known or
suspected security threat with a specific defense—which is often complex. It is
hard to believe that network operators will ever be able to deploy all of these
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defenses, and troubling to think that they will have to choose some arbitrary
subset of them. Furthermore, many of these security papers are excellent. They
use careful and subtle reasoning to enumerate possible attacks and discuss which
ones their defenses should hold against. But there are so many that one is
driven to say, “What an insightful list! But how do I know that they thought
of everything?”

We feel that there is an urgent need to start integrating and unifying this
knowledge, and that compositional architecture provides a framework for do-
ing so. We are beginning by analyzing results from a large number of research
sources, and unifying them through use of the model. Further steps will lever-
age the structure and modularity of the model to reduce the “attack surface”
of networks that satisfy today’s requirements, so that they can have property
guarantees built into their software and hardware.

Exercises

3. This exercise concerns overlay-based positive filtering of TCP traffic. The
lightweight authenticator is the combination of destination TCP port and des-
tination name, where destinations are found in a public /24 subnetwork of the
Internet. There are several ways that an attacker can probe a subnetwork,
finding out whether or not a SYN packet reaches a server [1]. Let’s say that
a probe requires 7 packets on the average, probe packets are 130 bytes on the
average, and the subnetwork is served by a 100 Mbps Ethernet. What is the
minimum time it would take for an attacker to check all possible lightweight
authenticators, to find the one that gets through the filters?

4. Explain in detail how VPN technology fits the overlay pattern for positive
filtering. Are there differences from SOS and Mayday as examples of the pat-
tern?

5. Read the SOS paper [15] and assign a unique name to each object or object
type referred to in the SOS architecture. For each of these object or object
types, what is the set of names used for it in the paper? What do you think of
the technical writing in this paper?

Sidebars

Sidebar: Botnets

A botnet is not a network according to the strict definition in this book, but
rather a group of user members of the public Internet. A botnet can be assem-
bled by an illegal enterprise, and rented out to attackers for small fees.

A machine becomes part of a botnet when it is penetrated and infected with
a particular kind of malware. This is all too easy for certain large classes of
machines, which is why botnets of millions are common.
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Machines are most easily penetrated when their manufacturers install de-
fault passwords in their software, and users connect them to the public Internet
without changing their passwords. Attackers simply try IP addresses until they
find such machines. Classes of such machines and their default credentials are
posted on the Web for attackers to use.

Internet of Things machines are particularly vulnerable, because they include
devices such as home routers, digital video recorders, and baby monitors often
operated by users who are not computer-savvy. Another vulnerable class is
virtual machines in public clouds, because they are initialized with operating-
system defaults and can be penetrated before their customer has access to them!

Once a machine has become part of a botnet, it behaves normally until the
master of the botnet sends it a triggering signal. Once triggered, it begins to
generate IP packets to contribute to a flooding attack.
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