Inverse Kinematics

COS 526: Advanced Computer Graphics

Kinematic Tree / Skeleton

- Collection of bodies and joints
- Tree-structured: loop joints would break "tree-ness"
- Root joint
- Position, rotation set by global transformation
- Root body
- Other bodies relative to root
- "Inboard" vs "outboard": towards vs. away from root

Inboard and Outboard

Joints

- Inboard body
- Outboard body

Body

- Inboard joint
- Outboard joint (may be several)

Inboard and Outboard

Joints

- Inboard body
- Outboard body

Body

- Inboard joint
- Outboard joint (may be several)

Bodies

Bodies arranged in a tree

- For now, assume no loops
- Body's parent (except root)
- Body's child (may have many)

Joints

Interior Joints (typically not 6 DOF)

- Pin - rotate about one axis
- Ball - arbitrary rotation
- Prism - translate along one axis

Pin Joints

- Relative to coordinate system at inboard joint...
- Apply rotation about fixed axis
- Translate origin to outboard joint

Ball Joints

- Relative to coordinate system at inboard joint...
- Apply rotation about arbitrary axis
- Translate origin to outboard joint

Prism Joints

- Relative to coordinate system at inboard joint...
- Translate along fixed axis
- Translate origin to outboard joint

Forward Kinematics

- Composite transformations down the hierarchy

Inverse Kinematics

- Given
- Root transformation
- Initial configuration
- Desired end point location
- Find
- Interior parameter settings

Inverse Kinematics

2-Segment Arm in 2D

Direct IK

- Analytically solve for parameters (not general)

Difficult Issues

- Multiple configurations distinct in config space
- Or connected in config space

Infeasible Regions

Numerical Solution

- Start in some initial config. (previous frame)
- Define error metric (goal pos - current pos)
- Compute Jacobian with respect to inputs
- Iterate with gradient descent, Newton's method, etc.
- General principle of goal optimization

Back to 2 Segment Arm

Prism and Ball Joints in 3D...

Issues

- Jacobian not always invertible
- Use an SVD and pseudo-inverse
- Iterative approach, not direct
- The Jacobian is a linearization, changes
- Practical implementation
- Analytic forms for prism, ball joints
- Composing transformations
- Or quick and dirty: finite differencing
- Cyclic coordinate descent (each DOF one at a time)

Multiple Links

- IK requires Jacobian
- Need generic method for building one
- Won't work to just concatenate matrices

$$
\boldsymbol{d}=\left[\begin{array}{l}
d_{3} \\
d_{2 \mathrm{~b}} \\
d_{2 \mathrm{a}} \\
d_{1 \mathrm{~b}}
\end{array}\right]
$$

$$
\mathrm{d} \boldsymbol{p} \neq \tilde{J} \cdot \mathrm{~d} \boldsymbol{d}
$$

Composing Transformations

Transformation from body to world

$$
X_{0 \leftarrow i}=\prod_{j=1}^{i} X_{(j-1) \leftarrow j}=X_{0 \leftarrow 1} \cdot X_{1 \leftarrow 2} \cdots
$$

Rotation from body to world

$$
R_{0 \leftarrow i}=\prod_{j=1}^{i} R_{(j-1) \leftarrow j}=R_{0 \leftarrow 1} \cdot R_{1 \leftarrow 2} \cdots
$$

Need to transform Jacobians to common coordinate system (WORLD)

Inverse Kinematics: Final Form

$$
\begin{aligned}
& J=\left[\begin{array}{cc}
R_{0 \leftarrow 2 \mathrm{~b}} \cdot J_{3}\left(\theta_{3}, \boldsymbol{p}_{\mathbf{3}}\right) \\
R_{0 \leftarrow 2 \mathrm{a}} \cdot & J_{2 \mathrm{~b}}\left(\theta_{2 \mathrm{~b}}, X_{2 \mathrm{~b} \leftarrow 3} \cdot \boldsymbol{p}_{\mathbf{3}}\right) \\
R_{0 \leftarrow 1} \cdot & J_{2 \mathrm{a}}\left(\theta_{2 \mathrm{a}}, X_{2 \mathrm{a} \leftarrow 3} \cdot \boldsymbol{p}_{\mathbf{3}}\right) \\
J_{1}\left(\theta_{1}, X_{1 \leftarrow 3} \cdot \boldsymbol{p}_{3}\right)
\end{array}\right]_{\substack{\text { Noen E.Ear row in the ebove } \\
\text { slouid be transposed.l. }}}^{\mathrm{T}} \\
& \boldsymbol{d}=\left[\begin{array}{c}
d_{3} \\
d_{2 \mathrm{~b}} \\
d_{2 \mathrm{a}}
\end{array}\right] \quad \mathrm{d} \boldsymbol{p}=J \cdot \mathrm{~d} \boldsymbol{d}
\end{aligned}
$$

Issues

- Jacobian not always invertible
- Use an SVD and pseudo-inverse
- Iterative approach, not direct
- The Jacobian is a linearization, changes
- Practical implementation
- Analytic forms for prism, ball joints
- Composing transformations
- Or quick and dirty: finite differencing
- Cyclic coordinate descent (each DOF one at a time)

A Cheap Alternative

- Estimate Jacobian (or parts of it) w. finite differences
- Cyclic coordinate descent
- Solve for each DOF one at a time
- Iterate till good enough / run out of time

More complex systems

- More complex joints (prism and ball)
- More links
- Other criteria (center of mass or height)
- Hard constraints (e.g., foot plants)
- Unilateral constraints (e.g., joint limits)
- Multiple criteria and multiple chains
- Loops
- Smoothness over time
- DOF determined by control points of curve (chain rule)

Practical Issues

- How to pick from multiple solutions?
- Robustness when no solutions
- Contradictory solutions
- Smooth interpolation
- Interpolation aware of constraints

Prior on "good" configurations

Style-Based Inverse Kinematics Grochow, Martin, Hertzmann, Popović

