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Motivation

• 3D scanning makes it possible
to capture large, detailed models
of real-world objects



Motivation

• Models may be dense
– Hundreds of millions of

samples

– Can’t decimate without
losing detail



Goals

• An interactive viewer for large models
(108 – 109 samples)

• Fast startup and progressive loading

• Maintains interactive frame rate

• Compact data structure

• Fast preprocessing



Sample Renderings of  a
127-million-sample Model

Interactive (8 frames/sec) High quality (8 sec)



Previous Systems for
Rendering Large Models

• Level of detail control in architectural 
walkthrough, terrain rendering systems 
[Funkhouser 93, Duchaineau 97]

• Progressive meshes [Hoppe 96, Hoppe 97]

• These systems often have expensive data 
structures or high preprocessing costs



Outline

• Data structure: bounding sphere hierarchy

• Rendering algorithm: traverse tree and splat

• Point rendering: when is it appropriate?



QSplat Data Structure

• Key observation: a single bounding sphere 
hierarchy can be used for
– Hierarchical frustum and backface culling

– Level of detail control

– Splat rendering [Westover 89]



Creating the Data Structure

• Start with a triangle mesh produced by aligning 
and integrating scans [Curless 96]



Creating the Data Structure

• Place a sphere at each node, large enough to 
touch neighbor spheres



Creating the Data Structure

• Build up hierarchy



QSplat Node Structure
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QSplat Node Structure

• Position and radius encoded relative 
to parent node
– Hierarchical coding vs. delta coding 

along a path for vertex positions
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QSplat Node Structure
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QSplat Node Structure
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QSplat Node Structure
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QSplat Node Structure

• Number of children (0, 2, 3, or 4) – 2 bits

• Presence of grandchildren – 1 bit
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QSplat Node Structure

• Normal quantized to grid
on faces of a cube

Position
and

Radius

Tree
Structure Normal

Width of
Cone of
Normals

Color
(Optional)

13 bits 3 bits 14 bits 2 bits 16 bits

52×52×6



QSplat Node Structure

• Each node contains bounding cone of children’s normals

• Hierarchical backface culling [Kumar 96]
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QSplat Node Structure
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QSplat Node Structure

• Per-vertex color is quantized 5-6-5 (R-G-B)
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QSplat Rendering Algorithm

• Traverse hierarchy recursively

if  (node not visible)
Skip this branch

else if (leaf  node)
Draw a splat

else if (size on screen < threshold)
Draw a splat

else
Traverse children

Hierarchical frustum /
backface culling

Point rendering

Adjusted to maintain
desired frame rate

Level of detail
control



Frame Rate Control

• Feedback-driven frame rate control
– During motion: adjust recursion threshold based on 

time to render previous frame

– On mouse up: redraw with smaller thresholds

– Consequence: frame rate may vary

• Alternative:
– Predictive control of detail [Funkhouser 93]



Loading Model from Disk

• Tree layout:
– Breadth-first order in memory and on disk

• Working set management:
– Memory mapping disk file

– Consequence: lower detail for new geometry

– Alternative: Active working set management
with prefetching [Funkhouser 96, Aliaga 99]



Polygons QSplat

Tradeoffs of  Splatting

• For rendering large 3D models, what are the tradeoffs of:

Good for large, flat or
subtly curved regions

Good for models with
detail everywhere

Highly-efficient rasterization
with 3D graphics hardware

Higher per-pixel cost, but
less slowdown in

absence of 3D hardware

Decimation or creating
LOD data structures
is often expensive

Fast preprocessing



Demo – St. Matthew

• 3D scan of 2.7 meter statue 
at 0.25 mm

• 102,868,637 points

• File size: 644 MB

• Preprocessing time: 1 hour



Conclusion

• Non-polygonal rendering
– Works well when # samples >> # pixels

– Lack of connectivity may = simpler algorithms

– Bad for flat regions

• Time, space efficiency important for big data sets
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