
Point-Based Rendering
of Large 3D Models

Szymon Rusinkiewicz
Princeton University

Marc Levoy
Stanford University

Motivation

• 3D scanning makes it possible
to capture large, detailed models
of real-world objects

Motivation

• Models may be dense
– Hundreds of millions of

samples

– Can’t decimate without
losing detail

Goals

• An interactive viewer for large models
(108 – 109 samples)

• Fast startup and progressive loading

• Maintains interactive frame rate

• Compact data structure

• Fast preprocessing

Sample Renderings of a
127-million-sample Model

Interactive (8 frames/sec) High quality (8 sec)

Previous Systems for
Rendering Large Models

• Level of detail control in architectural
walkthrough, terrain rendering systems
[Funkhouser 93, Duchaineau 97]

• Progressive meshes [Hoppe 96, Hoppe 97]

• These systems often have expensive data
structures or high preprocessing costs

Outline

• Data structure: bounding sphere hierarchy

• Rendering algorithm: traverse tree and splat

• Point rendering: when is it appropriate?

QSplat Data Structure

• Key observation: a single bounding sphere
hierarchy can be used for
– Hierarchical frustum and backface culling

– Level of detail control

– Splat rendering [Westover 89]

Creating the Data Structure

• Start with a triangle mesh produced by aligning
and integrating scans [Curless 96]

Creating the Data Structure

• Place a sphere at each node, large enough to
touch neighbor spheres

Creating the Data Structure

• Build up hierarchy

QSplat Node Structure

Position
and

Radius

Tree
Structure Normal

Width of
Cone of
Normals

Color
(Optional)

13 bits 3 bits 14 bits 2 bits 16 bits

6 bytes

QSplat Node Structure

• Position and radius encoded relative
to parent node
– Hierarchical coding vs. delta coding

along a path for vertex positions

Position
and

Radius

Tree
Structure Normal

Width of
Cone of
Normals

Color
(Optional)

13 bits 3 bits 14 bits 2 bits 16 bits

Center Offset

Radius Ratio

QSplat Node Structure

Position
and

Radius

Tree
Structure Normal

Width of
Cone of
Normals

Color
(Optional)

13 bits 3 bits 14 bits 2 bits 16 bits

Uncompressed

QSplat Node Structure

Position
and

Radius

Tree
Structure Normal

Width of
Cone of
Normals

Color
(Optional)

13 bits 3 bits 14 bits 2 bits 16 bits

Delta Coding
[Deering 96]

QSplat Node Structure

Position
and

Radius

Tree
Structure Normal

Width of
Cone of
Normals

Color
(Optional)

13 bits 3 bits 14 bits 2 bits 16 bits

Hierarchical
Coding

QSplat Node Structure

• Number of children (0, 2, 3, or 4) – 2 bits

• Presence of grandchildren – 1 bit

Position
and

Radius

Tree
Structure Normal

Width of
Cone of
Normals

Color
(Optional)

13 bits 3 bits 14 bits 2 bits 16 bits

QSplat Node Structure

• Normal quantized to grid
on faces of a cube

Position
and

Radius

Tree
Structure Normal

Width of
Cone of
Normals

Color
(Optional)

13 bits 3 bits 14 bits 2 bits 16 bits

52×52×6

QSplat Node Structure

• Each node contains bounding cone of children’s normals

• Hierarchical backface culling [Kumar 96]

Position
and

Radius

Tree
Structure Normal

Width of
Cone of
Normals

Color
(Optional)

13 bits 3 bits 14 bits 2 bits 16 bits

QSplat Node Structure

Position
and

Radius

Tree
Structure Normal

Width of
Cone of
Normals

Color
(Optional)

13 bits 3 bits 14 bits 2 bits 16 bits

Culled Not Culled

Viewer

QSplat Node Structure

• Per-vertex color is quantized 5-6-5 (R-G-B)

Position
and

Radius

Tree
Structure Normal

Width of
Cone of
Normals

Color
(Optional)

13 bits 3 bits 14 bits 2 bits 16 bits

QSplat Rendering Algorithm

• Traverse hierarchy recursively

if (node not visible)
Skip this branch

else if (leaf node)
Draw a splat

else if (size on screen < threshold)
Draw a splat

else
Traverse children

Hierarchical frustum /
backface culling

Point rendering

Adjusted to maintain
desired frame rate

Level of detail
control

Frame Rate Control

• Feedback-driven frame rate control
– During motion: adjust recursion threshold based on

time to render previous frame

– On mouse up: redraw with smaller thresholds

– Consequence: frame rate may vary

• Alternative:
– Predictive control of detail [Funkhouser 93]

Loading Model from Disk

• Tree layout:
– Breadth-first order in memory and on disk

• Working set management:
– Memory mapping disk file

– Consequence: lower detail for new geometry

– Alternative: Active working set management
with prefetching [Funkhouser 96, Aliaga 99]

Polygons QSplat

Tradeoffs of Splatting

• For rendering large 3D models, what are the tradeoffs of:

Good for large, flat or
subtly curved regions

Good for models with
detail everywhere

Highly-efficient rasterization
with 3D graphics hardware

Higher per-pixel cost, but
less slowdown in

absence of 3D hardware

Decimation or creating
LOD data structures
is often expensive

Fast preprocessing

Demo – St. Matthew

• 3D scan of 2.7 meter statue
at 0.25 mm

• 102,868,637 points

• File size: 644 MB

• Preprocessing time: 1 hour

Conclusion

• Non-polygonal rendering
– Works well when # samples >> # pixels

– Lack of connectivity may = simpler algorithms

– Bad for flat regions

• Time, space efficiency important for big data sets

	Point-Based Rendering of Large 3D Models
	Motivation
	Motivation
	Goals
	Sample Renderings of a�127-million-sample Model
	Previous Systems for�Rendering Large Models
	Outline
	QSplat Data Structure
	Creating the Data Structure
	Creating the Data Structure
	Creating the Data Structure
	QSplat Node Structure
	QSplat Node Structure
	QSplat Node Structure
	QSplat Node Structure
	QSplat Node Structure
	QSplat Node Structure
	QSplat Node Structure
	QSplat Node Structure
	QSplat Node Structure
	QSplat Node Structure
	QSplat Rendering Algorithm
	Frame Rate Control
	Loading Model from Disk
	Tradeoffs of Splatting
	Demo – St. Matthew
	Conclusion

