Spectral Meshes

COS 526: Advanced Computer Graphics

Motivation

- Want "frequency domain" representation for 3D meshes
- Smoothing
- Compression
- Progressive transmission
- Watermarking
- etc.
- Analogous to Fourier transform in 1D / 2D:
- Express signal as sum of content at different frequencies

In the Frequency Domain...

Jean Baptiste Joseph
Fourier (1768-1830)

Frequency Domain

- Any signal can be represented as a sum of sinusoids at discrete frequencies, each with a given magnitude and phase

Frequency Domain

- Any signal can be represented as a sum of sinusoids at discrete frequencies, each with a given magnitude and phase

Frequency Content in Audio

- Frequency related to pitch:
- "A 440": 440 Hz
- 880 Hz : one octave above
- Frequency also related to timbre:
- Real sounds contain many frequencies
- Higher frequency content can make sounds "brighter"
- In speech, higher frequencies are related to vowels, consonants (independent of spoken/sung pitch)

Spectrogram, Northern Cardinal

Fourier Series: Building Up a Function

- Periodic function $\mathrm{f}(\mathrm{x})$ defined over $[-\pi . . \pi]$
$f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n x)+\sum_{n=1}^{\infty} b_{n} \sin (n x)$

Fourier Series: Finding Coefficients

- Periodic function $\mathrm{f}(\mathrm{x})$ defined over $[-\pi . . \pi]$

$$
\begin{gathered}
f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n x)+\sum_{n=1}^{\infty} b_{n} \sin (n x) \\
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x \\
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x
\end{gathered}
$$

Fourier Series in 2D

- 2D bases for 2D signals (images)

$a \cos \left(n_{x} x\right) \cos \left(n_{y} y\right)$

Fourier Transform

- Transform applied to function to analyze a signal's frequency content
- Several versions:

	Continuous Time	Discrete Time
Aperiodic / unbounded time, continuous frequency	Fourier Transform	Discrete-time Fourier Transform (DTFT)
Periodic or bounded time, discrete frequency	Fourier Series	Discrete Fourier Transform (DFT) (can use FFT for this)

Applying Euler's Formula

- Euler's formula:

$$
e^{i x}=\cos (x)+i \sin (x)
$$

- Apply:
becomes

$$
f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n x)+\sum_{n=1}^{\infty} b_{n} \sin (n x)
$$

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}
$$

where

$$
c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x
$$

Fourier Transform

- [Continuous] Fourier transform:

$$
F(k)=F(f(x))=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i k x} d x
$$

- Discrete Fourier transform:

$$
F_{k}=\sum_{x=0}^{n-1} f_{x} e^{-2 \pi i \frac{k}{n} x}
$$

- F is a function of frequency - describes "how much" f contains of sinusoids at frequency k
- Fourier transform is invertible

DFT and Inverse DFT (IDFT)

$$
F_{k}=\sum^{n-1} f_{x} e^{-2 \pi i \frac{k}{n} x}
$$

$$
f_{x}=\frac{1}{n} \sum_{k=0}^{n-1} F_{k} e^{2 \pi i \frac{k}{n} x}
$$

Computing Discrete Fourier Transform

$$
F_{k}=\sum_{x=0}^{n-1} f_{x} e^{-2 \pi \frac{k}{n} x}
$$

- Straightforward computation: for each of n DFT values, loop over n input samples. Total: $O\left(n^{2}\right)$
- Fast Fourier Transform (FFT): O(n $\log _{2} n$) time

The FFT

Discovered by Johann Carl Friedrich Gauss (1777-1855)

The FFT

Rediscovered and popularized in 1965 by
J. W. Cooley and John Tukey (Princeton alum and faculty)

Computing Discrete Fourier Transform

- Fast Fourier Transform (FFT): O(n $\log _{2} n$) time
- Revolutionized signal processing, filtering, compression, etc.
- Also turns out to have less roundoff error

JPEG Image Compression

a. Original image

FIGURE 27-15
Example of JPEG distortion. Figure (a) shows the original image, while (b) and (c) shows restored images using compressiou ratios of $10: 1$ and $45: 1$, respectively. The high compressiou ratio used in (c) results in each 8×8 pixel group being represented by less than 12 bits.

b. With $10: 1$ compression

c. With $45: 1$ compression

Discrete Cosine Transform (DCT)

Filtering in the Frequency Domain

Filtering in the Frequency Domain

Filtering

Filtering on a Mesh?

Filtering on a Mesh?

- Problem: 2D surfaces embedded in 3D are not (height) functions

Height function, regularly sampled above a 2D domain

General 3D shapes

Basis Functions for 3D Meshes

- Need extension of the Fourier basis to a general (irregular) mesh

Basis Functions for 3D Meshes

- We need a collection of basis functions
- First basis functions will be very smooth, slowly-varying
- Last basis functions will be high-frequency, oscillating
- We will represent our shape (mesh geometry) as a llinear combination of the basis functions

Harmonics

$\sin (k x)$ are the stationary vibrating modes $=$ harmonics of a string

Harmonics

Harmonics

Line

Stationary vibrating modes

Spherical Harmonics

Sphere

Harmonics

Stationary vibrating modes

- You may recognize these from chemistry as "electron orbitals"

Manifold Harmonics

Stationary vibrating modes

Harmonics

- Wave equation:

T $\partial^{2} y / \partial x^{2}=\mu \partial^{2} y / \partial t^{2}$
T: stiffness μ : mass

- Stationary modes:
$y(x, t)=y(x) \sin (\omega t)$
$\partial^{2} y / \partial x^{2}=-\mu \omega^{2} / T y$
- eigenfunctions of $\partial^{2} / \partial x^{2}$

Harmonics

- Harmonics are eigenfunctions of $\partial^{2} / \partial x^{2}$
- On a mesh, $\partial^{2} / \partial x^{2}$ is the Laplacian Δ
- Frequency domain basis functions for 3D meshes are eigenfunctions of the Laplacian

The Mesh Laplacian Operator

- Measures the local smoothness at each mesh vertex

Laplacian Operator in Matrix Form

$$
\left(\begin{array}{cccccccc}
d_{1} & -1 & 0 & \cdots & -1 & \cdots & \cdots & 0 \\
0 & d_{2} & & -1 & & & -1 & \\
\vdots & & d_{3} & & & & & \\
\vdots & & & \ddots & & & & \\
\vdots & & & & \ddots & & & \\
\vdots & & & & & \ddots & & \\
0 & -1 & & -1 & & -1 & d_{n-1} & \\
-1 & & -1 & & -1 & & & d_{n}
\end{array}\right)\left(\begin{array}{c}
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\mathbf{v}_{n-1} \\
\mathbf{v}_{n}
\end{array}\right)=\left(\begin{array}{c}
\delta_{1} \\
\delta_{2} \\
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\delta_{n-1} \\
\delta_{n}
\end{array}\right)
$$

L matrix

Spectral Bases

- L is a symmetric $n \times n$ matrix
- Eigenfunctions of L computed with spectral analysis

Basis vectors

Frequencies, sorted in ascending order

The Spectral Basis

- First functions are smooth and slow, last oscillate a lot

chain connectivity

spectral basis of $L=$ the DCT basis

$2^{\text {nd }}$ basis function

$10^{\text {th }}$ basis function

$100^{\text {th }}$ basis function

The Spectral Basis

- First functions are smooth and slow, last oscillate a lot

Spectral Mesh Representation

- Coordinates represented in spectral basis:
- $\mathbf{X}, \mathbf{Y}, \mathbf{Z} \in \mathbf{R}^{\mathrm{n}}$.

$$
\begin{aligned}
& \mathbf{X}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\alpha_{1} \mathbf{b}_{1}+\alpha_{2} \mathbf{b}_{2}+\ldots \alpha_{n} \mathbf{b}_{n} \\
& \mathbf{Y}=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)=\beta_{1} \mathbf{b}_{1}+\beta_{2} \mathbf{b}_{2}+\ldots \beta_{n} \mathbf{b}_{n} \\
& \mathbf{Z}=\left(\begin{array}{c}
z_{1} \\
z_{2} \\
\vdots \\
z_{n}
\end{array}\right)=\gamma_{1} \mathbf{b}_{1}+\gamma_{2} \mathbf{b}_{2}+\ldots \gamma_{n} \mathbf{b}_{n}
\end{aligned}
$$

Spectral Mesh Representation

- Coordinates represented in spectral basis:

$$
\left(\begin{array}{c}
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\vdots \\
\mathbf{v}_{n}
\end{array}\right)=\left(\begin{array}{c}
\alpha_{1} \\
\beta_{1} \\
\gamma_{1}
\end{array}\right)^{\mathrm{T}} \mathbf{b}_{1}+\left(\begin{array}{c}
\alpha_{2} \\
\beta_{2} \\
\gamma_{2}
\end{array}\right)^{\mathrm{T}} \mathbf{b}_{2}+\ldots+\left(\begin{array}{c}
\alpha_{n} \\
\beta_{n} \\
\gamma_{n}
\end{array}\right)^{\mathrm{T}} \mathbf{b}_{n}
$$

The Spectral Basis

- Most shape information is in low-frequency components

Applications

- Smoothing
- Compression
- Progressive transmission
- Watermarking
- etc.

Mesh Smoothing

- Aim to remove high frequency details

Spectral Mesh Smoothing

- Drop the high-frequency components

$$
\left(\begin{array}{c}
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\vdots \\
\mathbf{v}_{n}
\end{array}\right)=\left(\begin{array}{c}
\alpha_{1} \\
\beta_{1} \\
\gamma_{1}
\end{array}\right)^{\mathrm{T}} \mathbf{b}_{1}+\left(\begin{array}{c}
\alpha_{2} \\
\beta_{2} \\
\gamma_{2}
\end{array}\right)^{\mathrm{T}} \mathbf{b}_{2}+\ldots+\left(\begin{array}{c}
\alpha_{n} \\
\beta_{n} \\
\gamma_{n}
\end{array}\right)^{\mathrm{T}} \mathbf{b}_{n}
$$

High-frequency components!

Mesh Compression

- Aim to represent surface with fewer bits

36 bits/vertex

1.4 bits/vertex

Mesh Compression

- Most of mesh data is in geometry
- The connectivity (the graph) can be very efficiently encoded
- About 2 bits per vertex only
- The geometry (x, y, z) is heavy!
- When stored naively, at least 12 bits per coordinate are needed, i.e. 36 bits per vertex

Mesh Compression

- What happens if we just quantize xyz coordinates?

original

8 bits/coordinate

Mesh Compression

- Quantization of the Cartesian coordinates introduces high-frequency errors to the surface
- High-frequency errors alter the visual appearance of the surface - affect normals and lighting

Mesh Compression

- Transform the Cartesian coordinates to another space where quantization error will have low frequency in the regular Cartesian space
- Quantize the transformed coordinates
- Low-frequency errors are less apparent to a human observer

Spectral Mesh Compression

- The encoding side:
- Compute the spectral bases from mesh connectivity
- Represent the shape geometry in the spectral basis and decide how many coeffs. to leave (K)
- Store the connectivity and the \mathbf{K} non-zero coefficients
- The decoding side:
- Compute the first \mathbf{K} spectral bases from the connectivity
- Combine them using the \mathbf{K} received coefficients and get the shape

Spectral Mesh Compression

- Low-frequency errors are hard to see

Progressive Transmission

- First transmit the lower-eigenvalue coefficients (low frequency components), then gradually add finer details by transmitting more coefficients

Mesh Watermarking / Steganography

- Embed a bitstring in the low-frequency coefficients

Caveat

- Performing spectral decomposition of a large matrix ($\mathrm{n}>1000$) is expensive $-\mathrm{O}\left(\mathrm{n}^{3}\right)$
- No FFT because of lack of regular structure
- Possible solutions:
- Simplify mesh
- Work on small blocks (like JPEG)

