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Motivation

• Want “frequency domain” representation for 
3D meshes
– Smoothing 

– Compression

– Progressive transmission

– Watermarking

– etc.

• Analogous to Fourier transform in 1D / 2D:
– Express signal as sum of content at different frequencies



In the Frequency Domain…

Jean Baptiste Joseph 
Fourier (1768-1830)



Frequency Domain

• Any signal can be represented as a sum of sinusoids 
at discrete frequencies, each with a given 
magnitude and phase
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Frequency Content in Audio

• Frequency related to pitch:
– “A 440”: 440 Hz

– 880Hz: one octave above

• Frequency also related to timbre:
– Real sounds contain many frequencies

– Higher frequency content can make sounds “brighter”

• In speech, higher frequencies are related to 
vowels, consonants (independent of 
spoken/sung pitch)



Spectrogram, Northern Cardinal



Fourier Series: Building Up a Function

• Periodic function f(x)
defined over [–π .. π ]
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Fourier Series: Finding Coefficients

• Periodic function f(x)
defined over [–π .. π ]
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Fourier Series in 2D

• 2D bases for 2D signals (images)

𝑎𝑎 cos(𝑛𝑛𝑥𝑥𝑥𝑥) cos(𝑛𝑛𝑦𝑦𝑦𝑦)



Fourier Transform

• Transform applied to function to analyze a signal’s
frequency content

• Several versions:

Continuous Time Discrete Time

Aperiodic / unbounded 
time, continuous
frequency

Fourier Transform Discrete-time Fourier 
Transform (DTFT)

Periodic or bounded 
time, discrete frequency

Fourier Series Discrete Fourier 
Transform (DFT)
(can use FFT for this)



Applying Euler’s Formula

• Euler’s formula:

• Apply:

becomes
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Fourier Transform

• [Continuous] Fourier transform:

• Discrete Fourier transform:

• F is a function of frequency – describes “how much”
f contains of sinusoids at frequency k

• Fourier transform is invertible
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DFT and Inverse DFT (IDFT)
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Computing Discrete Fourier Transform

• Straightforward computation: for each of n DFT 
values, loop over n input samples.  Total: O(n2)

• Fast Fourier Transform (FFT): O(n log2 n) time
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Discovered by Johann Carl Friedrich Gauss (1777-1855)

The FFT



The FFT

Rediscovered and popularized in 1965 by
J. W. Cooley and John Tukey (Princeton alum and faculty)



Computing Discrete Fourier Transform

• Fast Fourier Transform (FFT): O(n log2 n) time
– Revolutionized signal processing, filtering, compression, etc.

– Also turns out to have less roundoff error



JPEG Image Compression

Discrete 
Cosine 

Transform
(DCT)

[Steven W. Smith 1997]



Filtering in the Frequency Domain

=Σ

sin(kx)

f



Filtering in the Frequency Domain

=x



Filtering

Geometric space
Frequency space

Inverse
Fourier

Transform

Fourier
Transform

Filtering
Convolution

x



Filtering on a Mesh?

Geometric space
Frequency space

Filtering
[Taubin 95]

?? x



Filtering on a Mesh?

• Problem: 2D surfaces embedded in 3D 
are not  (height) functions

Height function, regularly 
sampled above a 2D domain

General 3D shapes



Basis Functions for 3D Meshes

• Need extension of the Fourier basis to a general 
(irregular) mesh

on ?

sin(kx)



Basis Functions for 3D Meshes

• We need a collection of basis functions
– First basis functions will be very smooth, slowly-varying

– Last basis functions will be high-frequency, oscillating

• We will represent our shape (mesh geometry) as a
linear combination of the basis functions



Harmonics

sin(kx) are the stationary vibrating modes = harmonics of a string



Harmonics

Harmonics

Line

Stationary vibrating modes



Spherical Harmonics

• You may recognize these from chemistry as
“electron orbitals”

Sphere

Harmonics

Stationary vibrating modes



Manifold Harmonics

?Harmonics

Stationary vibrating modes



Harmonics

• Wave equation:
T ∂²y/∂x² = μ ∂²y/∂t²
T: stiffness μ: mass

• Stationary modes:
y(x,t) = y(x)sin(ωt)
∂²y/∂x² = -μω²/T y
– eigenfunctions of ∂²/∂x²

y
x



Harmonics

• Harmonics are eigenfunctions of ∂²/∂x²

• On a mesh, ∂²/∂x² is the Laplacian Δ

• Frequency domain basis functions for 3D meshes are 
eigenfunctions of the Laplacian



The Mesh Laplacian Operator

• Measures the local smoothness at each mesh 
vertex
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Laplacian Operator in Matrix Form

1 1 1

2 2 2

3

1 1 1

1 0 1 0
0 1 1

0 1 1 1
1 1 1

n n n

n n n

d
d

d

d
d

δ
δ

δ
δ

− − −

− −    
    − −    
    
    
    =    
    
    
    − − −
        − − −    

v
v

v
v

  

  

   

   

   

L matrix



Spectral Bases

• L is a symmetric n×n matrix

• Eigenfunctions of L computed with spectral analysis

L =

T
λ1

λ2

λn

1 2

| | |

| | |
nb b b 1 2

| | |

| | |
nb b b

Basis vectors Frequencies,
sorted in ascending 

order



The Spectral Basis

• First functions are smooth and slow, last oscillate a lot

horse connectivity

spectral basis of L =
the DCT basis

chain connectivity

2nd basis 
function

10th basis 
function

100th basis 
function



The Spectral Basis

• First functions are smooth and slow, last oscillate a lot



Spectral Mesh Representation

• Coordinates represented in spectral basis:

• X, Y, Z ∈ Rn.  1
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Spectral Mesh Representation

• Coordinates represented in spectral basis:
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The first 
components are 
low-frequency

The last 
components are 
high-frequency



The Spectral Basis

• Most shape information is in low-frequency components

[Karni and Gotsman 00] 



Applications

• Smoothing

• Compression

• Progressive transmission

• Watermarking

• etc.



Mesh Smoothing

• Aim to remove high frequency details

[Taubin 95]



Spectral Mesh Smoothing

• Drop the high-frequency components
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High-frequency components!



Mesh Compression

• Aim to represent surface with fewer bits

1.4 bits/vertex36 bits/vertex



Mesh Compression

• Most of mesh data is in geometry
– The connectivity (the graph) can be very efficiently 

encoded
• About 2 bits per vertex only

– The geometry (x,y,z) is heavy!
• When stored naively, at least 12 bits per coordinate are needed,

i.e. 36 bits per vertex



Mesh Compression

• What happens if we just quantize xyz coordinates?

original 8 bits/coordinate



Mesh Compression

• Quantization of the Cartesian coordinates introduces 
high-frequency errors to the surface

• High-frequency errors alter the visual appearance of 
the surface – affect normals and lighting



Mesh Compression

• Transform the Cartesian coordinates to another 
space where quantization error will have low 
frequency in the regular Cartesian space

• Quantize the transformed coordinates

• Low-frequency errors are less apparent to
a human observer



Spectral Mesh Compression

• The encoding side:
– Compute the spectral bases from mesh connectivity
– Represent the shape geometry in the spectral basis and decide how 

many coeffs. to leave (K)
– Store the connectivity and the K non-zero coefficients

• The decoding side:
– Compute the first K spectral bases from the connectivity
– Combine them using the K received coefficients and get the shape



Spectral Mesh Compression

• Low-frequency errors are hard to see



Progressive Transmission

• First transmit the lower-eigenvalue coefficients
(low frequency components), then gradually add finer details 
by transmitting more coefficients

[Karni and Gotsman 00] 



Mesh Watermarking / Steganography

• Embed a bitstring in the low-frequency coefficients

– Low-frequency changes are hard to notice

[Ohbuchi et al. 2003] 



Caveat

• Performing spectral decomposition of a large matrix 
(n>1000) is expensive – O(n3)
– No FFT because of lack of regular structure

• Possible solutions: 
– Simplify mesh

– Work on small blocks (like JPEG)
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