Laplacian Mesh
 Representation and Editing

COS 526: Advanced Computer Graphics

UNIVERSITY

Outline

- Differential surface representation
- Ideas and applications
- Compact shape representation
- Mesh editing and manipulation
- Membrane and flattening

Motivation

- Meshes are great, but:
- Geometry is represented in a global coordinate system
- Single Cartesian coordinate of a vertex doesn't say much

Laplacian Mesh Editing

- Meshes are difficult to edit

Motivation

- Meshes are difficult to edit

Motivation

- Meshes are difficult to edit

Differential Coordinates

- Represent a point relative to its neighbors
- Represent local detail at each surface point
- better describe the shape
- Linear transition from global to differential
- Useful for operations on surfaces where surface details are important

Differential Coordinates

- Detail $=$ surface - smooth(surface)
- Smoothing = averaging

$$
\begin{aligned}
& \boldsymbol{\delta}_{i}=\mathbf{v}_{i}-\frac{1}{d_{i}} \sum_{j \in N(i)} \mathbf{v}_{j} \\
& \boldsymbol{\delta}_{i}=\sum_{j \in N(i)} \frac{1}{d_{i}}\left(\mathbf{v}_{i}-\mathbf{v}_{j}\right)
\end{aligned}
$$

Connection to the Smooth Case

- The direction of $\boldsymbol{\delta}_{i}$ approximates the normal
- The size approximates the mean curvature H
- 1 / radius of local best-fit sphere
- Laplace-Beltrami operator on surface (like Laplacian of a 2D function)

$$
\boldsymbol{\delta}_{\mathbf{i}}=\frac{1}{d_{i}} \sum_{\mathbf{v} \in N(i)}\left(\mathbf{v}_{\mathbf{i}}-\mathbf{v}\right)
$$

$$
\lim _{\operatorname{len}(\gamma) \rightarrow 0} \frac{1}{\operatorname{len}(\gamma)} \int_{\mathbf{v} \in \gamma}\left(\mathbf{v}_{\mathbf{i}}-\mathbf{v}\right) d s=H\left(\mathbf{v}_{\mathbf{i}}\right) \mathbf{n}_{\mathbf{i}}
$$

Laplacian Matrix

- Coefficient of each vertex in computation of Laplacian at every other vertex

The mesh
$\left[\begin{array}{cccccccccccc}4 & -1 & -1 & & -1 & -1 & & & & & \\ -1 & 3 & -1 & -1 & & & & & & & \\ -1 & -1 & 5 & -1 & & -1 & -1 & & & & \\ & -1 & -1 & 4 & & & -1 & & & -1 \\ -1 & & & & 3 & -1 & & -1 & & \\ -1 & & -1 & & & 4 & -1 & -1 & & \\ & & -1 & -1 & & -1 & 6 & -1 & -1 & -1 \\ & & & & -1 & -1 & -1 & 6 & -1 & -1 \\ & & & & & & -1 & -1 & 3 & -1 \\ & & & -1 & & & -1 & -1 & -1 & 4\end{array}\right]$

The symmetric Laplacian L_{s}

Weighting Schemes

$$
\delta_{i}=\frac{\sum_{j \in(i)} w_{i j}\left(\mathbf{v}_{i}-\mathbf{v}_{j}\right)}{\sum_{j \in N(i)} w_{i j}}
$$

- Ignore geometry

$$
\delta_{\text {umbrella }}: w_{i j}=1
$$

- Integrate over circle around vertex

$$
\delta_{\text {mean value }}: w_{\mathrm{ij}}=\tan \phi_{\mathrm{ij}} / 2+\tan \phi_{\mathrm{ij}+1} / 2
$$

- Integrate over Voronoi region of vertex

$$
\delta_{\text {cotangent }}: w_{\mathrm{ij}}=\cot \alpha_{\mathrm{ij}}+\cot \beta_{\mathrm{ij}}
$$

Laplacian Mesh Representation

- Vertex positions are represented by Laplacian coordinates ($\delta_{x}, \delta_{y}, \delta_{z}$)

Basic Properties

- $\operatorname{rank}(\mathrm{L})=\mathrm{n}-\mathrm{C} \quad(\mathrm{n}-1$ for connected meshes)
- Can reconstruct geometry from δ up to translation
- Add constraint on one vertex for unique solution

Reconstruction

- Constrain additional vertices: overdetermined system

$$
\arg \min _{x}\left(\left\|L x-\delta_{x}\right\|^{2}+\sum_{k=1}^{n_{c}}\left\|x_{k}-c_{k}\right\|^{2}\right)
$$

- Cool underlying idea: shape defined as minimizer of an objective function

So Far...

- Laplacian coordinates δ
- Local representation
- Translation-invariant
- Linear transition from δ to xyz
- can constrain more than 1 vertex
- least-squares solution

Editing Using Laplacian Coordinates

The editing process from the user's point of view:

1. Set ROI, anchors, and a handle vertex
2. Move the handle, interactively see effect on mesh

Editing Using Laplacian Coordinates

Behind the scenes...

- ROI defines vertices that are included in the solve
- Constraints at anchors: responsible for smooth transition of the edited part to the rest of the mesh
- Increasing weight with distance away from handle
- Precomputation enables interactivity

$$
\begin{array}{rlr}
\mathbf{A} \mathbf{x} & = & \quad \mathrm{b} \\
\mathbf{A}^{\mathbf{T}} \mathbf{A} \mathbf{x} & =\quad \mathbf{A}^{\mathbf{T}} \mathbf{b} \\
\mathbf{x} & =\underbrace{\left(\mathbf{A}^{\mathbf{T}} \mathbf{A}\right)^{-\mathbf{1}} \mathbf{A}^{\mathbf{T}}}_{\text {compute once }} \mathbf{b}
\end{array}
$$

Mesh Editing Example

Mesh Editing Example

Original

Regular Laplacian editing

Solve for transformations

Mesh Editing Example

Mesh Editing Example

What Else Can We Do with It?

- By modifying Laplacians or positional constraints, can achieve a variety of other effects

Detail Transfer

"Peel" the detail off one surface and transfer to another

Detail Transfer

Detail Transfer

Mixing Laplacians

- Take weighted average of δ_{i} and δ_{i}^{\prime}

】

Mesh Transplanting

- Geometrical stitching via Laplacian mixing

Mesh Transplanting

- Details gradually change in the transition area

Mesh Transplanting

- Details gradually change in the transition area

Feature Preserving Smoothing

- Weighted positional and smoothing constraints

Feature Preserving Smoothing

- Weighted positional and smoothing constraints

Original

Smoothed

Parameterization

- Use zero Laplacians.

In 2D:

Texture Mapping

Texture Mapping

