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LP Duality is an extremely useful tool for analyzing structural properties of linear
programs. While there are indeed applications of LP duality to directly design algorithms,
it is often more useful to gain structural insight (such as approximation guarantees, etc.).

In this lecture, we’ll see statements of LP duality. We’ll practice applying it in the
homeworks.

0.1 Weak LP Duality

Consider a linear program of the form:

max
∑
i

cixi∑
i

Ajixi ≤ bj , ∀j

xi ≥ 0, ∀i.

We’ll call this the primal LP. ~x is called a primal solution, and our goal is to find a
primal solution that maximizes our objective, subject to the feasibility constraints. On
the other hand, instead of thinking about directly searching for good primal solutions, we
could alternatively think about searching for good upper bounds on how good a primal can
possibly be. This is called the dual problem. How can we derive an upper bound on how
good a primal can possibly be?

Consider the following: if we have weights wj ≥ 0 for each inequality j, and take a
linear combination of the feasibility constraints, we may directly conclude that any feasible
~x must satisfy:

∑
i

∑
j

wj ·Aji

xi ≤
∑
j

wj · bj .

Okay, so we can upper bound some linear function of any feasible ~x, so what? Well, if
we happen to have chosen our wjs so that

∑
j wjAji = ci for all i, now we’re in business!

We’ll have directly shown that
∑

i cixi ≤
∑

j wj · bj . In fact, because xi ≥ 0, even if we only
have

∑
j wjAji ≥ ci we’re in business, as we’d have:

∑
i

cixi ≤
∑
i

∑
j

wjAji

 · xi ≤∑
j

wj · bj .
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Note that the first inequality is only true because xi ≥ 0. So now we can think of the
following “dual” approach: search over all weights wj to find the ones that induce the best
upper bound. Note that our search is constrained to find weights such that ci ≤

∑
j wjAji,

so this itself is a linear program:

min
∑
j

wj · bj∑
j

wj ·Aji ≥ ci,∀i

wj ≥ 0, ∀j.

This is called the dual LP. As an exercise, verify that the dual of the dual LP is itself the
primal. Note that we have already proved that every feasible solution of the dual provides
an upper bound on how good any primal solution can possibly be. Therefore, we have
established what is called weak LP duality:

Theorem 1 (Weak LP Duality)
Let LP1 be any maximization LP and LP2 be its dual (a minimization LP). Then if:

• The optimum of LP1 is unbounded (+∞), then the feasible region of LP2 is empty.

• The optimum of LP1 finite, it is less than or equal to the optimum of LP2, or the
feasible region of LP2 is empty.

Proof: We have already proven the second bullet. To see the first bullet, observe that if
the feasible region of LP2 is non-empty, then we have directly found a finite upper bound
on LP1. So if LP1 is unbounded, LP2 must be empty. 2

In fact, we will see a stronger claim later. Weak Duality is easy to prove, and it’s good
to remember this intuition. Strong Duality (later) is good to know, but the intuition is
largely captured by the proof of Weak Duality.

0.1.1 Complementary Slackness

We’ll also want to discuss properties of optimal primal/dual pairs. One useful property is
called complementary slackness. A ~x and ~w are said to satisfy complementary slackness if
they satisfy condition 1) in the theorem statement below.

Theorem 2
Consider a primal LP, LP1 and its dual LP, LP2, and feasible (not necessarily optimal)
solutions ~x for the primal and ~w for the dual. Then the following are equivalent:

1. (wj = 0 OR
∑

iAjixi = bj for all j) AND
(
xi = 0 OR

∑
j Ajiwj = ci for all i

)
.

2.
∑

i cixi =
∑

j wjbj (and therefore both ~x is an optimal primal and ~w is an optimal
dual).
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Proof: Note that we can write:

∑
i

ci · xi −
∑
j

wjbj ≤
∑
i

(
∑
j

Aijwj) · xi −
∑
j

wjbj =
∑
j

wj ·

(∑
i

Aijxi − bj

)
.

The inequality is because ~w is a feasible solution to LP2. The equality is just rearranging
the order of sums. Let’s now analyze the RHS. Observe that

∑
iAijxi − bj ≤ 0 for all j as

~x is feasible for LP1. Observe also that wj ≥ 0 for all j, as ~w is feasible for LP2. So every
term in the summand multiplies a non-negative number by a non-positive number and is
therefore non-positive. This means that the RHS is zero if and only if for all j,
wj = 0 or

∑
iAijxi − bj = 0.

Now we turn our attention to the inequality. Note that because ci ≤
∑

j Aijwj for all i,
the inequality is strict if and only if there exists an i for which xi > 0 and ci <

∑
j Aijwj . So

the LHS is equal to the middle term if and only if for all i, xi = 0 or ci =
∑

j Aijwj.
Taking the two bold-font claims together, this means that the LHS is equal to zero if

and only if 1) holds. If 1) does not hold, then either the RHS is < 0, or the LHS is less
than the middle term (which is ≤ 0). Finally, observe that 2) holds if and only if the LHS
above is equal to zero. 2

0.2 Weak “Partial Duality”

We’ll discuss a slightly more general duality (it’s not obvious that the previous duality is a
special case of this, but it’s a good exercise to show so). We’ll again only prove the weak
case for now.

Definition 3
Consider an LP of the form:

max
∑
i

cixi∑
i

Ajixi ≤ bj , ∀j

xi ≥ 0, ∀i.

Then a Lagrangian relaxation of the above LP for a subset S of constraints and Lagrangian
multiplies λj ≥ 0 for all j ∈ S is the following (which we’ll refer to as LP λS :

max
∑
i

cixi +
∑
j∈S

λj

(
bj −

∑
i

Ajixi

)
∑
i

Ajixi ≤ bj , ∀j /∈ S

xi ≥ 0,∀i.
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Theorem 4 (Weak “Partial Duality”)
For all S,~λ, and any LP, the value of LP λS upper bounds the value of LP.

Proof: Let ~x∗ optimize LP. Then because ~x∗ is feasible for LP, it is also feasible for LP λS
(as the feasibility constraints in LP λS are a proper subset of those in LP). Also, because ~x∗

is feasible for LP, we have bj −
∑

iAjix
∗
i ≥ 0 for all j. As we also have λj ≥ 0, this means

that
∑

j∈S λj (bj −
∑

iAjix
∗
i ) ≥ 0. This directly implies that ~x∗ is feasible for LP λS , and

also that ~x∗ achieves a greater objective value when evaluated by LP λS than LP. 2

So every setting of ~λ again induces an upper bound on how good the solution to LP
can possibly be. We can also think about searching for the best bound of this form (for
a fixed S). We’ll again call ~λ a candidate dual solution since it helps witness an upper
bound on how good a primal solution can be. The problem below can be written as an LP
in terms of the variables λi (by introducing a variable t constrained so that t ≥

∑
i cixi +∑

j∈S λj (bj −
∑

iAjixi) and minimizing t, we saw this trick in Lecture 5 to minimize an
absolute value). We’ll refer to the following program as the partial Lagrangian w.r.t. S.

min
{λi≥0,i∈S}

{max
∑
i

cixi +
∑
j∈S

λj

(
bj −

∑
i

Ajixi

)
∑
i

Ajixi ≤ bj , ∀j /∈ S

xi ≥ 0, ∀i}.

0.2.1 Complementary Slackness

There’s a similar definition of Complementary Slackness for this notion of duality. Property
1) below captures this definition.

Theorem 5 (Complementary Slackness for Partial Lagrangian)
Let LP1 be a linear program and LP2 its Partial Lagrangian w.r.t. S. Let ~x be a candidate

primal solution to LP1, and ~λ a candidate dual solution LP2. Then the following are
equivalent:

1. For all j ∈ S, λj = 0 ORAjixi = bj , AND ~x = arg max~x|
∑

i Ajixi≤bj∀j /∈S,xi≥0∀i{
∑

i cixi+∑
j∈S λj (bj −

∑
iAjixi)}.

2.
∑

i cixi = max~x|
∑

i Ajixi≤bj∀j /∈S,xi≥0∀i{
∑

i cixi +
∑

j∈S λj (bj −
∑

iAjixi)} (and there-

fore, ~x is optimal for LP1, and ~λ is optimal for LP2).

Proof omitted, but similar to that in Section 1.1.

0.3 Strong Duality

(Proof adapted from Anupam Gupta’s scribed lecture notes here:
https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15859-f11/www/notes/lecture05.pdf).
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The previous sections discussed weak duality: using dual solutions as upper bounds on
how good a primal solution could be. In fact, something quite strong is true: there is always
a dual witnessing that the optimal primal is optimal. We’ll give a proof, but note that most
of the intuition (aside from geometry/linear algebra) is provided by Weak Duality. We’ll
just discuss the “classic” case, the “partial” case is similar and omitted.

Theorem 6 (Strong LP Duality)
Let LP1 be any maximization LP and LP2 be its dual (a minimization LP). Then:

• If the optimum of LP1 is unbounded (+∞), the feasible region of LP2 is empty.

• If the feasible region of LP1 is empty, the optimum of LP2 is either unbounded (−∞),
or also infeasible.

• If optimum of LP1 finite, then the optimum of LP2 is also finite, and they are equal.

The key ingredient in the proof will be what’s called the Separating Hyperplane Theo-
rem.

Theorem 7 (Separating Hyperplane Theorem)
Let P be a closed, convex region in Rn, and ~x be a point not in P . Then there exists a ~w
such that ~x · ~w > max~y∈P {~y · ~w}.

Proof: Consider the point ~y ∈ P closest to ~x (that is, minimizing ||~x− ~y||2 over all ~y ∈ P .
As distance is a positive continuous function, and P is a closed region, such a ~y exists. Now
consider the vector ~w = ~x− ~y. We claim that the chosen ~w is the desired witness.

Observe first that (~x − ~y) · ~w = ||~w||22 > 0, so indeed ~x · ~w > ~y · ~w. We just need to
confirm that ~y = arg max~z∈P {~z · ~w} and then we’re done.

Assume for contradiction that ~z · ~w > ~y · ~w and ~z ∈ P . Then as P is convex, ~zε =
(1 − ε)~y + ε~z ∈ P as well for all ε > 0. Observe that ||~x − ~zε||22 = ||~x − ~y + ε(~y − ~z)||22 =
||~x − ~y||22 − 2ε(~x − ~y) · (~y − ~z) + ε2||~y − ~z||22 = ||~x − ~y||22 − 2ε(~w) · (~y − ~z) + ε2||~y − ~z||22.
By hypothesis, ~w · (~y − ~z) < 0, and ||~y − ~z||22 is finite, so for sufficiently small ε, we get
||~x− ~zε||22 < ||~x− ~y||22, a contradiction. 2

Now, consider the optimum ~x of LP1. Let S denote the j for which
∑

iAjixi = bj , and
S̄ the constraints for which

∑
iAjixi < bj . We claim that ~c can be written as a convex

combination of the vectors ~Aj , j ∈ S (up to possible scaling).

Lemma 8
Let ~x be the optimum of LP1, and let S denote the j for which

∑
iAjixi = bj . Then there

exist {λj ≥ 0}j∈S such that ci =
∑

j∈S λjAji for all i.

Proof: Assume for contradiction that this were not the case. As the space X of all vectors
~y for which there exists {λj ≥ 0}j∈S such that yi =

∑
j∈S λjAji for all i is clearly closed

and convex, we can apply the separating hyperplane theorem. So there would exist some ~γ
such that ~c · ~γ > max~y∈X{~y · ~γ}. Now consider the vector ~x+ ε~γ.

We know that for all j ∈ S,
∑

iAjiγi ≤ 0. If not, then max~y∈X{~y · ~γ} = +∞, because
we could blow up λj . So for all j ∈ S,

∑
iAji(xi + εγi) ≤ bj . Moreover, for all i /∈ S,
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∑
iAjixi < bj , and

∑
iAjiγi is finite. So there exists a sufficiently small ε so that ~x+ ε~γ is

feasible for LP1.
Finally, observe that max~y∈X{~y · ~γ} ≥ 0, as ~0 ∈ X. So ~c · ~γ > 0, and we have shown

that ~x was not optimal. 2

Now with the lemma in hand, we want to show a dual whose value matches ~c · ~x. Let
~c =

∑
j∈S λj

~Aj with λj ≥ 0 as guaranteed by the lemma. Set wj = λj for all j ∈ S, and
wj = 0 for all j /∈ S. First, is it clear that ~w is feasible for LP2, as we have explicitly set
wj so that ci =

∑
j wjAij for all i. Now we just need to evaluate its value:

∑
j

bjwj =
∑
j∈S

bjwj +
∑
j /∈S

bj · 0 =
∑
j∈S

(
∑
i

Ajixi)wj =
∑
i

∑
j∈S

Ajiwj

xi =
∑
i

cixi.

So its objective value is exactly the same as LP1.


