
princeton univ. F’18 cos 521: Advanced Algorithm Design

Lecture 24: Heuristics: Algorithms we don’t know how to
analyze

Lecturer: Pravesh Kothari

Any smart teenager who knows how to program can come up with a new algorithm.
Analysing algorithms, by contrast, is not easy and usually beyond the teenager’s skillset. In
fact, if the algorithm is complicated enough, proving things about it (i.e., whether or not it
works) becomes very difficult for even the best experts. Thus not all algorithms that have
been designed have been analyzed. The algorithms we study today are called heuristics:
for most of them we know that they do not work on worst-case instances, but there is good
evidence that they work very well on many instances of practical interest. Explaining this
discrepancy theoretically is an interesting and challenging open problem.

Though the heuristics apply to many problems, for pedagogical reasons, throughout the
lecture we use the same problem as an example: 3SAT. Recall that the input to this problem
consists of clauses which are ∨ (i.e., logical OR) of three literals, where a literal is one of
n variables x1, x2, . . . , xn, or its negation. For example: (x1 ∨ ¬x4 ∨ x7) ∧ (x2 ∨ x3 ∨ ¬x4).
The goal is to find an assignment to the variables that makes all clauses evaluate to true.

This is the canonical NP-complete problem: every other NP problem can be reduced
to 3SAT (Cook-Levin Theorem, early 1970s). More importantly, problems in a host of
areas are actually solved this way: convert the instance to an instance of 3SAT, and use
an algorithm for 3SAT. In AI this is done for problems such as constraint satisfaction and
motion planning. In hardware and software verification, the job of verifying some property
of a piece of code or circuit is also reduced to 3SAT.

Let’s get the simplest algorithm for 3SAT out of the way: try all assignments. This
has the disadvantage that it takes 2n time on instances that have few (or none) satisfying
assignments. But there are more clever algorithms, which run very fast and often solve
3SAT instances arising in practice, even on hundreds of thousand variables. The codes for
these are publicly available, and whenever faced with a difficult problem you should try to
represent it as 3SAT and use these solvers.

1 Davis-Putnam procedure

The Davis-Putnam procedure from the 1950s is very simple. It involves assigning values to
variables one by one, and simplifying the formula at each step. For instance, if it contains
a clause x3 ∨ ¬x5 and we have just assigned x5 to T (i.e., true) then the clause becomes
true and can be removed. Conversely, if we assign it F the then the only way the remaining
variables can satisfy the formula is if x3 = T . Thus x5 = F forces x3 = T . We call these
effects the simplification of the formula.

Say the input is ϕ. Pick a variable, say xi. Substitute xi = T in ϕ and simplify it.
Recursively check the simplified formula for satisfiability. If it turns out to be unsatisfiable,
then substitute xi = F in ϕ, simplify it, and recursively check that formula for satisfiability.
If that also turns out unsatisfiable, then declare ϕ unsatisfiable.

1

2

When implementing this algorithm schema one has various choices. For instance, which
variable to pick? Random, or one which appears in the most clauses, etc. Similarly, whether
to try the value T first or F? What data structure to use to keep track of the variables
and clauses? Many such variants have been studied and surprisingly, they do very well in
practice. Hardware and software verification today relies upon the ability to solve instances
with hundreds of thousands of variables.
clause learning. The most successful variants of this algorithm involves learning from
experience. Suppose the formula had clauses (x1 ∨ x7 ∨ x9) and (x1 ∨¬x9 ∨¬x6) and along
some branch the algorithm tried x1 = F, x7 = F, x6 = T , which led to a contradiction since
x9 is being forced to both T and F . Then the algorithm has learnt that this combination is
forbidden, not only at this point but on every other branch it will explore in future. This
knowledge can be added in the form of a new clause x1 ∨ x7 ∨ ¬x6, since every satisfying
assignment has to satisfy it. As can be imagined, clause learning comes in myriad variants,
depending upon what rule is used to infer and add new clauses.

One of you asked why adding clauses (ie more constraints) simplifies the problem instead
of making it harder. The answer is that the clauses can be seen as guidance towards
a satisfying assignment (if one exists). The clauses can be used in making the crucial
decision in DPLL procedures about which variable to set, and how to set it (T or F). The
wrong decision may cause you to potentially incur huge cost. So anything that lowers the
probability of wrong decision by even a bit could drastically change your running time.

2 Local search

The above procedures set variables one by one. There is a different family of algorithms
that does this in a different way. A typical is Papadimitriou’s Walksat algorithm: Start
with a random assignment. At each step, pick a random variable and switch its value. If
this increases the number of satisfied clauses, make this the new assignment. Continue this
way until the number of satisfied clauses cannot be increased. Papadimitriou showed that
this algorithm solves 2SAT with high probability.

Such algorithms fit in a more paradigm called local search, which can be described as
follows.

Figure 1: Local search algorithms try to improve the solution by looking for small changes
that improve it.

3

Maintain a solution at each step. If the current solution is x, look for a
solution y in a neighborhood Ball(x, r) of radius r around x (that is, all
solutions that differ from x up to some amount small r). If you find such
a y that improves over x (in terms of the objective being optimized) then
replace x by y. Stop if no such y was found.

Clearly, when the algorithm stops, the current solution is optimal in its neighborhood
(i.e., locally optimal). One can think of this as a discrete analog of gradient descent. An ex-
ample of nonlocal change is any of the global optimization algorithms like Ellipsoid method.

Thus local search is a formalization of improvement strategies that we come up with
intuitively, e.g., change ourselves by making small continuous changes. The Japanese have
a name for it: kaizen1

Example 1. Local search is a popular and effective heuristic for many other problems
including traveling salesman and graph partitioning. For instance, one local search strategy
(which even students in my freshman seminar were able to quickly invent) is to start with a
tour, and at each step try to improve it by changing up to two edges (2-OPT) or k edges (k-
OPT). We can find the best local improvement in polynomial time (there are only

(
n
2

)
ways

to choose 2 edges in a tour) but the number of local improvement steps may be exponential
in n. So the overall running time may be exponential.

These procedures often do well in practice, though theoretical results are few and far
between. One definitive study is
The traveling salesman problem: A case study in local optimization, by D. Johnson and
C. McGeoch. 1997

Example 2. Evolution a la Darwin can be seen as a local search procedure. Mutations
occur spontaneously and can be seen as exploring a small neighborhood of the organism’s
genome. The environment gives feedback over the quality of mutations. If the mutation
is good, the descendents thrive and the mutation becomes more common in the gene pool.
(Thus the mutated genome becomes the new solution y in the local search). If the mutation
is harmful the descendents die out and the mutation is thus removed from the gene pool.

3 Difficult instances of 3SAT

We do know of hard instances for 3SAT for such heuristics. A simple family of examples uses
the fact that there are small logical circuits (i.e., acyclic digraphs using nodes labeled with
the gates ∨,∧,¬)for integer multiplication. The circuit for multiplying two n-bit numbers
has size about O(n log2 n). So take a circuit C that multiplies two 1000 bit numbers. Input
two random prime numbers p, q in it and evaluate it to get a result r. Now construct a
boolean formula with 2n+O(|C|) variables corresponding to the input bits and the internal
gates of C, and where the clauses capture the computation of each gate that results in
the output r. (Note that the bits of r are “hardcoded ”into the formula, but the bits of
p, q as well as the values of all the internal gates correspond to variables.) Thus finding a
satisfying assignment for this formula would also give the factors of r. (Recall that factoring

1I would like to know if Japanese magazines have cover stories on new kaizen ideas just as cover stories
in US magazines promote radical makeovers.

4

a product of two random primes is the hard problem underlying public-key cryptosystems.)
The above SAT solvers have difficulty with such instances.

Other families of difficult formulae correspond to simple math theorems. A simple one
is: Every partial order on a finite set has a maximal element. A partial order on n elements
is a relation ≺ satisfying: (a) xi ⊀ xi ∀i. (b) xi ≺ xj and xj ≺ xk implies xi ≺ xk
(transitivity) (c) xi ≺ xj implies xj ⊀ xi. (Anti-symmetry).

For example, the relationship “is a divisor of”is a partial order among integers. We can
represent a partial order by a directed acyclic graph.

Figure 2: The relation “is a divisor of”is a partial order among integers.

Clearly, for every partial order on a finite set, there is a maximal element i such that
i ⊀ j for all j (namely, any leaf of the directed acyclic graph.) This simple mathematical
statement can be represented as an unsatisfiable formula. However, the above heuristics
seem to have difficulty detecting that it is unsatisfiable.

This formula has a variables xij for every pair of elements i, j. There is a family of
clauses representing the properties of a partial order.

¬xii ∀i
¬xij ∨ ¬xjk ∨ xik ∀i, j, k
¬xij ∨ ¬xji ∀i, j

Finally, there is a family of clauses saying that no i is a maximal element. These clauses
don’t have size 3 but can be rewritten as clauses of size 3 using new variables.

xi1 ∨ xi2 ∨ · · · ∨ xin ∀i

4 Random SAT

One popular test-bed for 3SAT algorithms are random instances. A random formula with
m clauses is picked by picking each clauses independently as follows: pick three variables
randomly, and then toss a coin for each to decide whether it appears negated or unnegated.

Turns out if m < 3.9n or so, then Davis-Putnal type procedures usually find a satisfying
assignment. If m > 4.3n these procedures usually fail. There is a different algorithm called
Survey propagation that finds algorithms up to m close to 4.3n. It is conjectured that there
is a phase transition around m = 4.3n whereby the formula goes from being satisfiable with

5

probability close to 1 to being unsatisfable with probability close to 1. But this conjecture
is unproven, as is the conjecture that survey propagation works up to this threshold.

Now we show that if m > 5.2m then the formula is unsatisfiable with high probability.
This follows since the expected number of satisfying assignments in such a formula is 2n(78)m

(this follows by linearity of expectation since there are 2n possible assignments, and any
fixed assignment satisfies all the m independently chosen clauses with probability (78)m).
For m > 5.2n this number is very tiny, so by Markov’s inequality the probability it is ≥ 1
is tiny.

Note that we do not know how to prove in polynomial time, given such a formula with
m > 5.2n, that it is unsatisfiable. In fact it is known that known that for m > Cn for some
large constant C, the simple DP-style algorithms take exponential time.

5 Metropolis-Hastings and Computational statistics

Now we turn to counting problems and statistical estimation, discussed earlier in Lecture
21. Recall the Monte Carlo method for estimating the area of a region: through darts and
see what fraction land in the region.

Figure 3: Monte Carlo (dart throwing) method to estimate the area of a circle. The fraction
of darts that fall inside the disk is π/4.

Now suppose we are trying to integrate a nonnegative valued function f over the region.
Then we should throw a dart which lands at x with probability f(x). We’ll examine how
to throw such a dart.

First note that this is an example of sampling from a probability distribution for which
only the density function is known. Say the distribution is defined on {0, 1}n and we have
a goodness function f(x) that is nonnegative and computable in polynomial time given
x ∈ {0, 1}n. Then we wish to sample from the distribution where probability of getting x is
proportional to f(x). Since probabilities must sum to 1, we conclude that this probability
is f(x)/N where N =

∑
x∈{0,1}n f(x) is the so-called partition function. The main problem

problem here is that N is in general hard to compute; it is complete for the class]P
mentioned in the earlier lecture.

Example 3. The dart throwing/integration problem arises in machine learning (more gen-
erally, statistical procedures). For instance if there is a density p(x, y) and we wish to

6

compute p(x|y) using Bayes’ rule then we need p(xy)/p(y), and

p(y) =

∫
f(x, y)dx.

Lets note that if one could do such dart throwing in general, then 3SAT becomes easy.
Suppose the formula has n variables and m clauses. For any assignment x define f(x) =
22nfx where fx = number of clauses satisfied by x. Then if the formula has a satisfiable
assignment, then N > 22nm whereas if the formula is unsatisfiable then N < 2n×22n(m−1) <
22nm. In particular, the mass f(x) of a satisfying assignment exceeds the mass of all
unsatisfying assignments. So the ability to sample from the distribution would yield a
satisfying assignment with high probability.

The Metropolis-Hastings algorithm (named after its inventors) is a heuristic for sampling
from such a distribution. Define the following random walk on {0, 1}n. At every step the
walk is at some x ∈ {0, 1}n. (At the beginning use an arbitrary x.) At every step, toss a
coin. If it comes up heads, stay at x. (In other words, there is a self-loop of probability at
least 1/2.) If the coin came up tails, then randomly pick a neighbor x′ of x. Move to x′

with probability min{1, f(x
′)

f(x) }. (In other words, if f(x′) ≥ f(x), definitely move. Otherwise

move with probability given by their ratio.)

claim: If all f(x) > 0 then the stationary distribution of this Markov chain is exactly
p(x)/N , the desired distribution

Proof. The markov chain defined by this random walk is ergodic since f(x) > 0 implies it
is connected, and the self-loops imply it mixes. Thus it suffices to show that the (unique)
stationary distribution has the form f(x)/K for some scale factor K, and then it follows
that K is the partition function N . To do so it suffices to verify that such a distribution is
stationary, i.e., in one step the probability flowing out of a vertex equals its inflow. For any
x, lets L be the neighbors with a lower f value and H be the neighbors with value at least
as high. Then the outflow of probability per step is

f(x)

2K
(
∑
x′∈L

f(x′)

f(x)
+
∑
x′∈H

1),

whereas the inflow is
1

2
(
∑
x′∈L

f(x′)

K
· 1 +

∑
x′∈H

f(x′)

K

f(x)

f(x′)
),

and the two are the same.

Note: The advantage of the random walk method is that it can in principle explore a space
of exponential size while using only space for storing the current x. In this sense it is like
local search. In fact it is like a probabilistic version of local search on the objective f(x). In
local search one would move from x to x′ if that improves f , whereas here the move is made
with some probability depending upon f(x)/f(x′) and every possible move has a nonzero
probability.

7

Simulated Annealing. If we use the suggested goodness function for 3SAT f(x) = 22nfx

then this Markov chain can be shown to have poor mixing. So a variant is to use a markov
chain that updates itself. The goodness function is initialized to say 2γfx for γ = 1, then
allowed to mix. This stationary distribution may put too little weight on the satisfying
assignments. So then slowly increase γ from 1 to 2n, allowing the chain to mix for a while
at each step. This family of algorithms is called simulated annealing, named after the
physical process of annealing.

For further information see this survey and its list of references.

Satisfiability Solvers, by C.P. Gomes, H. Kautz, A. Sabharwal, and B. Selman. Handbook
of Knowledge Representation, Elsevier 2008.

6 Heuristics in Machine Learning

In many settings in machine learning, the problems of interest are nonconvex and even
NP-hard. A notable recent example is training a deep net to solve a prediction task. This
problem is known to be as hard as cracking cryptographic problems. But it is solved
essentially by gradient descent techniques on a nonconvex objective.

	Davis-Putnam procedure
	Local search
	Difficult instances of 3SAT
	Random SAT
	Metropolis-Hastings and Computational statistics
	Heuristics in Machine Learning

