PRINCETON UNIV. F’18 €o0s 521: ADVANCED ALGORITHM DESIGN

Lecture 13: Low Rank Approximation and the Singular
Value Decomposition

Lecturer: Christopher Musco

This unit is about finding compressed data representations — e.g. compressed represen-
tations of vectors a1, as,...a, € R? The techniques we have discussed so far (Johnson-
Lindenstrauss sketching and hashing for similarity search) are oblivious to any structure in
the dataset. They compress each point a; without looking at any other points. In some
ways, this obliviousness is a strength. It makes the methods fast and, as we saw in the
previous two lectures, we can obtain strong guarantees without making assumptions about
our data.

At the same time, obliviousness can be a weakness. Oblivious dimensionality reduction
methods don’t take advantage of structure which might make better compression possible.
Moreover, finding such structure might be interesting in its own right.

1 Low-rank structure

Today we will discuss a type of structure that can 1) allow for better dimensionality re-
duction, 2) lead to very interesting scientific discoveries and insights about data, and 3) is
remarkably common across diverse application areas.

In particular, we are interested in datasets where most of our vectors aq,...,a, can be
well approximated as a linear combination of a small ground set of vectors in R, {by, ..., b;}.
Le. for some set of k coefficients {Cy;,Cy;, ..., Ck;} we approximate a; by:

k
a; ~ E Cjibj-
j=1

Let A € RY™ be a data matriz which contains each a; as a column. If A is a rank k
matrix (i.e. a “low-rank” matrix), then it would be possible to find some ground set and
coefficients so that, for all ¢, this is actually an equality: a; = Z?Zl Cjib;j. Geometrically,
this would mean that all points lie on a low dimensional hyperplane in R? (see Figure 1)

B
d
]R v k dimensional A C
N _ hyperplane . afa) . af = |p)-|p
Figure 1: If aq,...,a, lie on a low dimensional hyperplane, then A = [aq,...,a,] is exactly

low rank, so it can be written as the product of two matrices, B € R¥* and C € RF*"

We can view the columns of C' = [c1,...,c,], which are each in R¥, as dimensionality
reductions of aq,...,a,. In the case when A is low-rank, consider choosing b1,...,b; to
be an orthogonal span for the hyperplane containing aq,...,a,. Then each ¢; is simply a;
represented in a coordinate basis for the hyperplane. So, for example, ||c;||2 = ||a;||2 for all
i, lei — ¢jll2 = |Jai — ajl|2 for all 4,5, and in general, [c1,...,¢,] captures all the geometric
information about our original dataset.

Low-rank approximation

Now of course, it’s very rare to find matrices that are actually low rank. On the other hand,
it’s very common to find matrices that are approximately low rank. I.e. where there exists
some set of ground set of vectors {b1,...,b;} and some coefficients Cj; so that, for example,
the following error measure is small:

2
n

k
D llai = > eibi| =114 B3 (1)
j=1

i=1 9

Here |- || denotes the Frobenius norm of a matrix (i.e. the square root of its sum of squared

entries):
M= > M.
i?j

Using the Frobenius norm gives a convenient way of using matrices to express our error
measure. There are other ways to measure if a matrix is “close to a low-rank matrix”, but
Frobenius norm distance is a popular measure and the one we will focus on today.

Computation

If A were exactly low-rank, BC' could be found using any standard orthogonalization pro-
cedure for finding a span for A’s columns. On the other, when A is only approximately
low-rank, we ideally want to solve:

: . 2
pegalin 14— BOI. (2)

This is a non-linear, non-convex optimization problem, but surprisingly it can be solved
very efficiently (in low polynomial time). We will discuss one particular method for doing
so in this lecture.

2 Example Applications

Before getting into algorithms, let’s see a few places where low-rank approximation is im-
portant in practice.

Latent Semantic Analysis (LSA)

Let’s return to the bag-of-words model discussed in previous lectures. Here each a; rep-
resents the i*" document in a database of n documents. The vector has an entry for all
possible words in a given language. At that location, it contains a count for the number of
times that word appeared in document 1.

A =lay,...,ay] is called the “term-document” matrix — each row corresponds to a term
and each column a document. Term document matrices tend to be close to low-rank, and
algorithms for low-rank approximation can recover that structure. In particular, we can find
an approximation BC for the term-document matrix where B has k columns b, . . ., b, € R?
(here d is the number of words in our language) and ||A — BC||% is small.

There are a number of justifications for why this might be the case. For example, one
simple generative model for documents would be to simply look at all of the words in a
language, look at the empirical frequency with which those words occur (e.g. “the” is
used much more frequently than “president”) and then assume that a typical document is
generated by drawing words at random according to their relative frequencies. Of course
this isn’t a very good model, but we can think about how to make it better.

For example, we might notice that documents about politics tend to use the word
“president” much more frequently than those about sports. Moreover, political documents
written in the US tend to use the word “president” more than political articles written in
the UK. Similarly, sports articles written in the US tend to use “touchdown” more than
sports articles written in the UK. We can construct a better model by assuming a document
can be assigned to a mix of potentially overlapping categories — for example, a document
about US environmental policy might have categories “politics”,“for US audience”, and
“environment”. Would could predict the words contained in that document by looking at
the global distribution of words used in the “politics”, “for US audience”, and “environment”
categories, and drawing words at random according to a mixture of those distributions.

This model turns out to be very powerful in predicting the frequency of words in a
document. Since it does so in a linear way (drawing from a linear combination of word
distributions), we expect that A will have a good k-rank approximation. Instead of hand
choosing categories, columns in B can be seen as representing a set of “optimal” categories.

This is the idea behind what’s known as “latent semantic analysis” in natural language
processing. Each column ¢; € C'is viewed as an indicator vector for the presence of different
categories in document a;. As a “semantic representation” for a document, ¢;’s can be used
to compare or cluster documents. For a more in-depth discussion, check out Chapter 18 in
[2] (freely available online) or [3].

Word embeddings

If columns in C give some sort of meaningful representation of words, what about rows in
B? We have one row for each word in our language. These rows are sometimes called “word
embeddings” — they can give very powerful semantic representations of words. Words that
tend to appear in similar categories of documents (e.g. in a similar context) tend to have
similar word embedding vectors. These embeddings can be used for finding similar words
or synonyms, but also for tasks like solving analogy problems.

There are many ways to generate better word embeddings. For example, instead of
looking at term-document co-occurrence, it’s more common to look at more local mea-
sures, like term-sentence co-occurence. Current algorithms are also based on more complex
models than the simple linear model discussed above (see e.g. https://nlp.stanford.
edu/projects/glove/ or https://code.google.com/archive/p/word2vec/), but it all
started with basic LSA and low-rank approximation!

Visualizing and understanding genetic data

Genetic data tends to be low-rank. Consider a vector a; for each individual in a population
that holds a numerical representation of that individual’s genome (e.g. a bit vector, with
every two bits representing the expression of a single nucleotide, which can take values A,
T, G, or C.). Why might this be the case?

At a course level genetics are controlled largely by ancestry — historically isolated popula-
tions (geographically, culturally, etc.) tend to have very similar genomes, with the exception
of a relatively small number of genes that distinguish individuals. Accordingly, if we let our
set of ground vectors by, ..., b, contain representative individuals from different ancestral
populations, we can do a pretty good job reconstructing every a; vector up to small error.
If we take the best low-rank approximation, we can do even better.

One particularly dramatic exposition of the low-rank natural of genetic data is given
in [1]. After a few basic data transformations (mean centering, removing outliers, etc.)
they took a rank-2 approximation of a genetic data set from populations in Europe. This
produced a set of two dimensional vectors, ci,..., ¢, for each individual. When plotting
these points on a two-dimensional grid, the location of each point roughly reflects the
ancestral origin of each individual!

In other words, each a; is well represented by a two dimensional linear model where each
dimension represents the East/West and North/South coordinates of where that individual
is from. In fact, since it was derived from an optimal rank-2 approximation, this is the best
two dimensional linear model for reconstructing A, indicating how important geography is
in genetic variation. I would encourage you to check out the paper (e.g. at https://wuw.
researchgate.net/publication/23469983_Genes_Mirror_Geography_within_Europe).

3 The Singular Value Decomposition

It turns out that optimal low-rank approximations can be computed using what’s known
at the “singular value decomposition”.

Theorem 1 (Singular Value Decomposition (SVD)). Consider A € R™ % and let r =
min(d,n). A can always be written as the product of three matrices, A = ULV where:

e U € R™" is a matrix with orthonormal columns,

o1
= is a non-negative diagonal matriz with entries o1 > ... > o, > 0,

Or

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://code.google.com/archive/p/word2vec/
https://www.researchgate.net/publication/23469983_Genes_Mirror_Geography_within_Europe
https://www.researchgate.net/publication/23469983_Genes_Mirror_Geography_within_Europe

o V € RY" s a matriz with orthonormal columns.

U’s columns are called the “left singular vectors” of A, V'’s columns are its “right singu-
lar vectors”, and o1,...,0. are its “singular values”. When the SVD is computed after
mean centering A’s columns or rows, the singular vectors are sometimes call “principal
components”.

The singular value decomposition is closely related to eigendecomposition: UX?U7 is
the eigendecomposition of AAT and VE2V7 is the eigendecomposition of AT A. Using eigen-
decomposition algorithms (e.q. the QR algorithm), it can be computed in approximately
O(nd?) time (assuming d < n).

The existence of the SVD may be surprising — it says that no matter what A looks like,
it can be represented at the product of 3 simple matrices — two orthogonal spans and a
diagonal scaling. The SVD has countless applications in linear algebra, but one of the most
useful is that it can be used to read-off the optimal k-rank approximation for A, for any k.

Claim 2 (Truncated SVD). For any k € 1,...,min(n, d), let U, € R™** contain the first k
columns of U, let Vi, € Rk contain the first k columns of V', and let ¥}, be a k x k diagonal
matriz containing A’s first singular values. Then:

_ T2, — : _ 2
1A= OV = | min 14— BO.

In other words, there is no better rank k approximation for A than UkEkaT.

Note that, a solution to our original low-rank approximation problem, (2), can be ob-
tained either by setting B = UpY and C = VkT, or by setting B = U and C = EkaT -
the product BC' is the same.

One thing surprising about Claim 2 is that it implies that we can find a basis set
for an optimal k rank approximation in a greedy way. The best ground set of a rank-k
approximation, ui,...,ug, just adds one vector to the best basis set for a rank-(k — 1)
approximation, uq,...,ug_1.

I’'m going to give a proof of Claim 2, but if you have already seen this before in a linear
algebra class, feel free to skip it. Or try to reprove it on your own.

Proof. Case: k = 1.

This statement is easiest to prove for kK = 1. For rank 1 approximation our goal is to choose
b e R% and ¢ € R™ to minimize:

n
1A =be"|F =) lai — i - blj3,
i=1

where ¢; is the ™" entry of ¢. Without loss of generality, we may assume that b is a unit
vector. For a given b, it’s clear that we should choose ¢; so that ¢; - b is the projection of a;
onto b. L.e. we should set ¢; = (a;, b) (see Figure 2 for the geometric intuition). Equivalently,
we should set:

c=0blA. (3)

So, our rank 1 optimization problem actually reduces to:

i A—bbTA||%. 4
st | I (4)

Figure 2: For an optimal rank 1 approximation with a fixed b, we should always choose ¢;
so that ¢;b is the projection of a; onto b.

In this case, by Pythagorean theorem, Y, |la; — ¢; - bl|3 = S0, llail3 — lleib]3 =
|AlI% — >0 |leibll2- So, in fact, solving (4) is actually equivalent to solving:

bhT Al 5
beRg,lﬁ)}\Tg:lH I (5)

From this point of view, it is clear that uq is the optimal choice for b. Writing A using the
SVD, we have

k
oo™ Al|F = [T Al3 = [T USVT| = [pTUR(5 = Y (b wi)?07.
i=1
Since U is orthonormal and [|b]|3 = 1, Zle(bTui)Q = 1. Accordingly, since o1 >,...,> oy,

Ele(bTui)Qaf is maximized when (b"u1)? = 1, which can be accomplished by setting
b= Uuy.

Case: k > 1.

The proof for k > 1 is similar. It will be helpful to use the following:

Claim 3 (Matrix Pythagorean Theorem). If M and N are matrices with mutually orthog-
onal columns, i.e. MTN =0, then,

1M + N = M| + [|V][7-

This is a direct consequence of writing ||[M + N||% = Y, [|m; + n;||3 and applying the
Pythagorean theorem to each column m; + n; separately.

As in the rank 1 case, without loss of generality we can view the low rank approximation
problem as choosing an optimal orthonormal matrix B to minimize |4 — BC||%. Using an
identical projection argument, the optimal C for a given B is BT A. So our goal is to solve:

: T 2
- |A—BB" Allp. (6)

By matrix Pythagorean theorem applied to ||(A — BBT A) + BBT A||%, we have
1A~ BETAI% = Al ~ | BBT A3
and thus (6) is equivalent to

T 2
e, [BBTA}. (7)

Since A can be written as UX V7T, this is equivalent to solving:

max |BBTUSVT|% = max |BTUS||%
BeRdxk BT B=] BeRdxk BT B=]

Q = BTU € R¥*" has orthonormal rows, so it’s columns cannot have norm great than 1.
Also the sum of @’s squared column norms is k (its Frobenius norm squared). It follows
that |QX]|% = Y1, l¢ll?0? < 0 + ...+ of. This maximum is obtained when Q’s first k
columns are the standard basis vector — i.e. when B = Uk.]

4 Greedily constructing low-rank approximations

As mentioned, one thing that’s interesting about the SVD and Claim 2 is that it implies
that we can construct an optimal low-rank approximation in a greedy way: if b; is the
best basis vector for a rank 1 approximation, then there’s an optimal rank 2 approximation
that maintains b; as one of its basis vectors. In fact, this observation gives an approach to
proving that the SVD exists for all matrices. Again, if you've already seen this proven in
another class, feel free to skip this section.

Consider the following iterative routine, which we will prove constructs a singular value
decomposition for any matrix A:

o Let AN = A,

e Fori=1,...,r:

— Let b;, ¢; = argmin,, . |A® — beT||2.

— Let A(i+1) — A(l) — biCZT and set U; = bz/Hbluz,’UZ = Cl‘/H’Uz‘HQ,Ui = HszQ . HCZHQ
o Set U =[uy,...,u], V=1v1,...,v], and ¥ = diag(oy,...,0.).

Note that step one of the procedure requires an algorithm for computing an optimal
rank 1 approximation to a given matrix. At least to prove existence of the SVD, we do
not need an actual implementation of this procedure. However, because we do care about
computing the SVD and rank-k approximations, we will eventually see an algorithm for
solving this rank 1 problem.

We first need to prove the following, which implies that our choice of U is orthonormal:

Claim 4. If by,...,by are chosen as above, then binj =0 for alli,j.

Proof. Let’s remove indices to keep notation simple, and consider an optimal rank 1 ap-
proximation bc! for a matrix A. We claim:

1. b is always in the column span of A.
2. b (A—bc") =0

The first point follows from a contradiction argument. If b is not in A’s column span, it can
be written it as Ax + y for some y orthogonal to all of A’s columns. Then:

14— b3 = 1A — Axe” — yeT |} = |4 — Awc|[3 + Iy [} > |14 — AwcT)3.

The second equality follows from Claim 3 because every column in yc’ is orthogonal to
every column in A — Azc!. This is a contradiction because Azc! is a rank 1 matrix that
clearly achieves better error than be’, which we claimed was chosen to be optimal. So we
conclude that b must in fact lie in A’s column span. The second claim follows from our
earlier projection argument: c(i) is chosen so that c(i)b is the projection of a; onto b, and
thus b” (a; — c(i)b) for all i.

From these two claims, it follows that, for any ¢, bZTbiH = 0, because b;1 is in the column
span of AUt but b; is orthogonal to that span. Then, by induction bZTbj =0forall j >i+1
as well. We will just argue one step of the induction: b7 A+ = pI'(AG+D — b, el) =
0 — 0. So b; is orthogonal to anything in the column span of A0*2) and is thus orthogonal
to bita.]

The same exact argument (applied to rows instead of columns) also let’s us establish:

Claim 5. If c1,...,c, are chosen using our greedy procedure above, then cZch =0 for all
i,7. In other words, our ground basis is orthogonal.

Finally, we note that, since by, ..., b, are all orthogonal to the column span of A7+1),

then it must be that ATTY = 0. So ST bick = A, and thus > w;o;v] = A for the
U= [u,...,upl, V= [v1,...,v:], and ¥ = diag(oy,...,0,) produced by the iterative
algorithm. Combined with Claim 4 and Claim 5 this proves Theorem 1.

5 Computing the best rank-1 approximation

The SVD gives one way of obtaining an optimal low-rank approximation for any rank
parameter k. It can be computed in essentially time O(ndr) time, where r = min(n, d).!
In general, this is too slow from many large data matrices. Next lecture we will discuss
the power method, which gives a much faster way of finding just the top singular vector
of a matrix, which is typically the problem we want to solve in data applications. The
power method runs in approximately O(nd) time. It can thus find find £ singular vectors
iteratively in O(ndk) time, which is much faster than a full SVD when k < rank(A).

We say “roughly” because technically there is no “exact” algorithm for the SVD, even in the Real RAM
model of computation. This is consequence of the Abel-Ruffini theorem. Thus, all SVD algorithms are
technically approximation algorithms. However, standard methods obtain very good € dependence. E.g. the
QR algorithm can compute a factorization ULV7T with |[USVT — A|| < € in O(nd? + d*loglog(1/¢)) time.
The second term is ignored because it’s always lower order in practice.

References

[1] John Novembre, Toby Johnson, Katarzyna Bryc, Zoltan Kutalik, Adam R Boyko, Adam
Auton, Amit Indap, Karen King, Sven Bergmann, Matthew Nelson, Matthew Stephens,
Carlos Bustamante, . (2008). Genes Mirror Geography within Europe. Nature. 456. 274.

[2] Christopher D. Manning, Prabhakar Raghavan and Hinrich Schtze, Introduction to
Information Retrieval, Cambridge University Press. 2008. https://nlp.stanford.edu/
IR-book/information-retrieval-book.html.

[3] T.K. Landauer, P.W. Foltz, and D. Laham. Introduction to Latent Semantic Analysis.
Discourse Processes, 25, 259-284. (1998)

https://nlp.stanford.edu/IR-book/information-retrieval-book.html
https://nlp.stanford.edu/IR-book/information-retrieval-book.html

	Low-rank structure
	Example Applications
	The Singular Value Decomposition
	Greedily constructing low-rank approximations
	Computing the best rank-1 approximation

