
princeton univ. F’18 cos 521: Advanced Algorithm Design

Homework 3: Dimensionality Reduction and
High-Dimensional Geometry (60pts)

Due: Monday, November 19th, 2018, 11:59pm

Collaboration is allowed on this problem set, but solutions must be written-up individually.
Please list collaborators for each problem separately, or write “No Collaborators” if you
worked alone. Collaboration is not allowed on bonus problems.

Please prepare your problem sets in LaTeX and compile to a PDF for your final submission.
A LaTeX template is available on the course webpage.

§1 (10 pts) The `1 distance between vectors x, y ∈ Rd is defined as ‖x−y‖1 =
∑d

i=1 |xi−
yi|. Consider the Johnson-Lindenstrauss dimensionality reduction method described
in lecture: x→ Πx where each entry in Π ∈ Rm×d equals

Πij = c · gij ,

for some fixed scaling factor c and gij ∼ N (0, 1). Describe an example (i.e., a set of
points in Rd) which shows that, for any choice of c, this method does not preserve `1
distances, even within a factor of 2.

Extra credit: Show that no linear transformation suffices, let alone JL.

§2 (10 pts) Recall that a hyperplane in Rd is defined by parameters a ∈ Rd, c ∈ R and
contains all points x such that 〈a, x〉 = c.

Suppose we have n unit vectors in Rd separated into two sets X,Y with the guarantee
that there exists a hyperplane such that every point in X is on one side and every
point in Y is on the other. Furthermore, supppose that the `2 distance of each point
in X and Y to this hyperplane is at least ε. When this is the case, the seperating
hyperplane is said to have “margin” ε.

Show that if we use a Johnson-Lindenstrauss map to reduce the points to O(log n/ε2)
dimensions, then the dimension reduced data can still be separated by a hyperplane
with margin ε/4, with high probability.

§3 (5 pts) A k-sparse vector is any vector with k nonzero entries. Let Sk be the set of
all k-sparse vectors in Rd. Show that, if Π is chosen to be a Johnson-Lindenstrauss
embedding matrix (e.g. a scaled random Gaussian matrix) with s = O(k log d

ε2
) rows

then, with high probability,

(1− ε)‖Πx‖2 ≤ ‖x‖2 ≤ (1 + ε)‖Πx‖2

for all x ∈ Sk, simultaneously.
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§4 (10 pts) Given a data matrix X ∈ Rn×d with n rows (data points) x1, . . . , xn ∈ Rd,
the k-means clustering problem asks us to find a partition of our points into k disjoint
sets (clusters) C1, . . . Ck ⊆ {1, . . . , n} with

⋃k
j=1 Cj = {1, . . . , n}.

Let cj = 1
|Cj |

∑
i∈Cj xi be the centroid of cluster j. We want to choose our clusters to

minimize the sum of squared distances from every point to its cluster centroid. I.e.
we want to choose C1, . . . Ck to minimize:

fX(C1, . . . Ck) =
k∑
j=1

∑
i∈Cj

‖cj − xi‖22.

There are a number of algorithms for solving the k-means clustering problem. They
typically run more slowly for higher dimensional data points, i.e. when d is larger.
In this problem we consider what sort of approximation we can achieve if we instead
solve the problem using dimensionality reduced vectors in place of x1, . . . , xn.

To receive full credit, solve one of (a) or (b). If you solve both, you will
get extra credit.

Let OPTX = minC1,...Ck fX(C1, . . . Ck).

(a) Suppose that Π is a Johnson-Lindenstrauss map into s = O(log n/ε2) dimensions
and that we select the optimal set of clusters for Πx1, . . . ,Πxn. Call these clusters
them C̃1, . . . C̃k. Show that they obtain objective value fX(C̃1, . . . C̃k) ≤ (1 +
ε)OPTX , with high probability.

(Hint: reformulate the objective function to only involve `2 distances between
data points.)

(b) Instead, suppose we reduce our points to k dimensions using the SVD. I.e. let
Vk ∈ Rd×x have the first k right singular vectors of X. Show that, if C̃1, . . . C̃k
are the optimal clusters for V T

k x1, . . . , V
T
k xn, then fX(C̃1, . . . C̃k) ≤ 2OPTX .

(Hint: show that for every set of clusters, there is an orthonormal matrix C ∈
Rn×k such that fX(C1, . . . Ck) = ‖X − CCTX‖2F . I.e. reformulate k-means as a
k-rank approximation problem. )

(c) (Extra extra credit.) Show that the optimal clustering for V T
O(k/ε)x1, . . . , V

T
O(k/ε)xn

gives a (1 + ε) approximation to OPTX .

§5 (10 pts) A matroid on [n] elements is a collection of sets that generalized the concept
of linear independence for vectors. Specifically, a matroid I satisfies:

• Non-trivial: ∅ ∈ I.

• Downwards-closed: If S ∈ I, then T ∈ I for all T ⊆ S.

• Augmentation: If S, T ∈ I, and |S| > |T |, then there exists an i ∈ S \ T such
that T ∪ {i} ∈ I.1

1Think of this as a generalization of linear independence: if I give you a set S of k linearly independent
vectors, and T of < k linearly independent vectors, then there is some vector in S not spanned by T .
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Prove that the following collections are matroids:

(a) Sets of size at most k (that is, the elements are [n], and I = {X ⊆ [n]| |X| ≤ k}).
(b) Acyclic subgraphs of any undirected graph G = (V,E) (that is, the elements are

E and I = {X ⊆ E|X contains no cycles}).
(c) Let G = (L,R,E) be a bipartite graph. The elements are L, and I = {X ⊆

L| |N(S)| ≥ |S| ∀S ⊆ X} (N(S) are the neighbors of S: {x ∈ R| ∃y ∈ S, (x, y) ∈
E}). That is, X ∈ I if and only if all nodes in X can be simultaneously matched
to R.

§6 (5 pts) Given weights wi ≥ 0, i ∈ [n], and some collection of feasible sets I, your goal
is to find the max-weight feasible set: arg maxS∈I{

∑
i∈S wi}. Consider a greedy algo-

rithm that first sorts the elements in decreasing order of wi (i.e. picks a permutation
σ such that wσ(i) ≥ wσ(i+1) for all i), then iteratively does the following (initializing
A = ∅, i = 1, go until i > n): Check if A ∪ {σ(i)} ∈ I. If so, add σ(i) to A. Update
i := i+1. Prove that when I is a matroid, the greedy algorithm finds the max-weight
feasible set.

§7 (10 pts) This problem asks you to prove a simplified (and slightly weaker) version of
Theorem 7 from the Lecture 14 notes. Bounds on random matrices like this one are
valuable in analyzing many other randomized algorithms.

Construct a random symmetric matrix R ∈ Rn×n by setting Rij = Rji to +1 or −1,
uniformly at random. Prove that, with high probability,

‖R‖2 ≤ c
√
n log n,

for some constant c. This is much better than the naive bound of ‖R‖2 ≤ ‖R‖F = n.

Hint: For a symmetric matrix R, there is another way to write the spectral norm

besides ‖R‖2 = maxx
‖Rx‖2
‖x‖2 . It also holds that ‖R‖2 = maxx

|xTRx|
xT x

.

Hint: Try to bound xTRx
xT x

for one particular x, and then extend the result to hold for
all x, simultaneously. It is possible to solve this problem using the standard Hoeffding
bound for bounded random variables – you do not need exotic concentration bounds!


