
Distributed Snapshots
10/5/18



A note on channels and goroutines...
Using channels is easy, debugging them is hard…

Bullet-proof way: Keep track of how many things go in and go out

Always ask yourself: is this channel buffered?

In general, don’t use locks or atomic operations with channels (awkward)

Try not to nest goroutines (hard to reason about)





Need synchronization











Distributed snapshots are easy to screw up
Must ensure state is not duplicated across the cluster

Must ensure state is not lost across the cluster

Messages in flight must also be recorded

But which ones?



N1 N2

Event order:

1. Snap N1
2. N2 sends body
3. Snap N2
4. N1 receives body

Should record 
message!



N1 N2

Event order:

1. N2 sends body
2. Snap N2
3. N1 receives body
4. Snap N1

N1 already received 
the body in step 3

Should NOT 
record message



Intuition: guarantee zero loss + zero duplication
If you haven’t snapshotted your local state yet: 

● Do NOT record future messages you receive

If you have snapshotted your local state:
● Do record future messages you receive

Which one guarantees zero loss?
Which one guarantees zero duplication?



Chandy-Lamport snapshot algorithm
Key idea: Servers send marker messages to each other

Marker messages...

...mark the beginning of the snapshot process on the server

...act as a barrier (stopper) for recording messages



Refresher: system model
● N processes in the system with no process failures

○ Each process tracks some state

● Two FIFO unidirectional channels between every process pair P and Q
○ Channel also has state: the set of messages in the channel

○ All messages sent on channels arrive intact, unduplicated, in order



Chandy-Lamport snapshot algorithm
Starting the snapshot procedure on a server:

● Record local state

● Send marker messages on all outbound interfaces

When you receive a marker message on an interface:

● If you haven’t started the snapshot procedure yet, record your local state and send 

marker messages on all outbound interfaces

● Stop recording messages you receive on this interface

● Start recording messages you receive on all other interfaces

Terminate when all servers have received marker messages on all interfaces



Token passing example 1

A B

1 Token 0 Tokens



Token passing example 1

A B

0 Tokens 0 Tokens

Event order:

1. A sends 1 token

1 Token



Token passing example 1

A B

0 Tokens 0 Tokens

Event order:

1. A sends 1 token

2. A starts snapshot, 
sends marker1 TokenM



Token passing example 1

A B

0 Tokens 1 Token

Event order:

1. A sends 1 token

2. A starts snapshot, 
sends marker

3. B receives 1 token
M



Token passing example 1

A B

0 Tokens 1 Token

Event order:

1. A sends 1 token

2. A starts snapshot, 
sends marker

3. B receives 1 token

4. B receives marker, 
starts snapshot

M



Token passing example 1

A B

0 Tokens 1 Token

Event order:

1. A sends 1 token

2. A starts snapshot, 
sends marker

3. B receives 1 token

4. B receives marker, 
starts snapshot

5. A receives marker, 
ends snapshotWe did not record the token message because B 

received it before B started the snapshot process



Token passing example 2

A B

0 Tokens 1 Token



Token passing example 2

A B

0 Tokens 0 Tokens

Event order:

1. B sends 1 token

1 Token



Token passing example 2

A B

0 Tokens 0 Tokens

Event order:

1. B sends 1 token

2. A starts snapshot, 
sends marker

1 Token

M



Token passing example 2

A B

0 Tokens 0 Tokens

Event order:

1. B sends 1 token

2. A starts snapshot, 
sends marker

3. A receives 1 token, 
records message

1 Token

M



Token passing example 2

A B

0 Tokens 0 Tokens

Event order:

1. B sends 1 token

2. A starts snapshot, 
sends marker

3. A receives 1 token, 
records message

4. B receives marker, 
starts snapshot1 Token

M



Token passing example 2

A B

0 Tokens 0 Tokens

Event order:

1. B sends 1 token

2. A starts snapshot, 
sends marker

3. A receives 1 token, 
records message

4. B receives marker, 
starts snapshot

5. A receives marker, 
ends snapshot

1 Token

We recorded the token message because A received 
it after it has already started the snapshot process



Token passing example 3

A B

C

M m2m1

M
m

4

m
3

m
6

m
5

Which messages are 
definitely recorded*?

Which messages are 
definitely not recorded?

Which messages might 
be recorded?

* recorded as in-flight messages, i.e., 
as part of channel state rather than 
process state

m
7



Which messages are 
definitely recorded*?

Which messages are 
definitely not recorded?

Which messages might 
be recorded?

*recorded as in-flight messages

Token passing example 3

A B

C

M m2m1

M
m

4

m
3

m
6

m
5

m
7

m7

m1, m3

m2, m4, m5, m6



Assignment 2
You will implement the Chandy-Lamport snapshot algorithm

Application is a token passing system

Number of tokens must be preserved in your snapshots

Implementation uses discrete time simulator to order events

 manages servers and injects events into the system

 implements the snapshot algorithm



Assignment 2 interfaces

What kind of state does the simulator need to keep track of?

Time, topology, channels to signal the completion of snapshots



Assignment 2 interfaces

What kind of state does the server need to keep track of?

Local state, neighbors, which interfaces received markers, recorded messages



Assignment 2

Due 10/18 (Thursday) at 11:59pm!



Distributed database exercise



A B

C

x = 1, y = 1, z = 1 d = 4, e = 5, x = 1

d = 4, f = 10, y = 1



A B

C

x = 1, y = 3, z = 1 d = 8, e = 10, x = 1

d = 4, f = 10, y = 3

Set(d, 8)


