
Spanner and SNOW
12/7/18



Concurrency Control Recap
● Last precept: 2-phase locking (2PL) and optimistic concurrency control (OCC)
● 2PL:

○ Rule: Do not acquire a lock once any lock has been released
○ Growing Phase: acquire shared (read) locks and exclusive (write) locks
○ Shrinking Phase: release locks



How can we achieve strict serializability and scalability?

● Shard the keyspace: servers maintain a subset of the keyspace
● Use 2PL to handle concurrent transactions
● Use 2-phase commit (2PC) to achieve atomic commit of transactions
● How does 2PC handle server failures?

○ It doesn’t!
● Replicate each shard using Paxos!



Toy example:

2PL

2PC

Paxos

Shards

Client



Putting it together in a real system: Spanner
● Observation: reads are much more frequent than writes

○ Facebook’s TAO sees 500 reads per 1 write.
○ Google Ads (F1) on Spanner from 1? DC saw 51.5B reads in a 24 hour period
○ Many reads are across shards

● Takeaway: Make read-only transactions very efficient
● Two goals for Spanner:

○ Lock-free read-only transactions
○ Non-blocking, but stale (not strictly serializable) read-only transactions



Spanner
● Main idea: use real-time for ordering transactions by finding a maximum clock 

skew
● TrueTime

○ TrueTime.now()
■ Returns a range [a,b] where a is the earliest possible time, and b is latest

○ TrueTime.after(t)
■ True if the current time is definitely after t

○ TrueTime.before(t)
■ True if the current time is definitely before t



General transactions
● General transactions are transactions that can contain reads and writes
● Similar to 2PL+2PC+Paxos scheme above, but use TrueTime to determine 

commit timestamps for transactions
● Each server maintains tsafe where all transactions with commit timestamp si < 
tsafe are committed and can be read.



General transactions (steps)

General transactions are driven by the client:

1. Client issues reads to the leader of each shard group 
2. Leader acquires read locks and returns the most recent value to the client
3. Client locally performs the writes
4. Client chooses a coordinator from the shard leaders
5. Client initiates the commit protocol by sending a commit message to each 

leader with the buffered writes and the coordinator ID
6. Leaders execute the commit protocol
7. Client waits for the commit message from the coordinator



General transactions (commit protocol)

1. All shard leaders acquire write locks
2. Non-coordinators

a. Choose a prepare timestamp > all previous local timestamps
b. Log the prepare record via Paxos
c. Notify the coordinator of the prepare timestamp

3. Coordinator
a. Waits for all prepare timestamps
b. Chooses a commit timestamp >= prepare timestamp and > local timestamps
c. Logs commit record via Paxos
d. Wait until TrueTime.after(commit timestamp)
e. Sends commit timestamp to replicas, non-coordinators, and the client

4. All apply the transaction at commit timestamp and release the locks



Example

txn 1:
x = r(a)
y = r(z)
x = x + y
w(z = x)

Client

Sa-m

Sn-z



Example

txn 1:
x = r(a)
y = r(z)
x = x + y
w(z = x)

Client

Sa-m

Sn-z

r(z)

r(a)

s_lock(a)
return

value(a)

s_lock(z)
return 

value(z)

a == 1

z == 2

x = 1
y = 2
x = 3
w(z = 3)



s_lock(z)
x_lock(z)
unlock()

s_lock(a)
wait(tsafe>st1)
unlock()

Example

txn 1:
x = r(a)
y = r(z)
x = x + y
w(z = x)

Client

Sa-m

Sn-z

commit t1, coord: Sa-m

committed

commit t1, coord: Sa-m, w(z=3)

x = 1
y = 2
x = 3
w(z = 3)

sp = 7 st1 = 8



Lock-free read-only transactions
1. Client chooses a commit timestamp (sread) to be TrueTime.now.latest(), sends 

this to shards along with transaction
2. Shards wait until sread < tsafe
3. Shards read data as of the time sread
4. Shards return data.



Read-Only Example

txn 1:
x = r(a)
y = r(z) Client

Sa-m

Sn-z

r(z), ro, sr

r(a), ro, sr

wait(tsafe > sr)
return 

value(a)

wait(tsafe > sr)
return 

value(z)

a == 1

z == 2

sr =
TT.now()
.latest



Better read-only transaction algorithm?
● Can we make it non-blocking and strictly serializable without adding extra 

round-trips?
● The SNOW Theorem says no!



The SNOW Theorem
Read-only transaction algorithms cannot achieve all of the SNOW properties

● Strict Serializability
● Non-blocking: Servers return a value immediately without waiting
● One Response:

○ Read-only transactions take a single round of communication
○ Read operations return only one value (cannot send multiple versions of the data)

● Write transactions that conflict: Can handle concurrent write transactions
● Latency-optimal: N+O
● SNOW-optimal: any three of the four properties



SNOW and Spanner

● What properties does the Spanner RO-txn have?
○ SOW: Must block waiting for TrueTime.after(sread)

● SNOW-optimal?
○ Yes.

● Latency-optimal (N+O)?
○ Nope! Can we get latency-optimal?

■ Must give up something.



Spanner snapshot read-only transactions
● Return a stale read result by explicitly reading at a time before tsafe
● Which SNOW properties?

○ NOW



Lock-free RO-txn

txn 1:
x = r(a)
y = r(z) Client

Sa-m

Sn-z

r(z), ro, sr

r(a), ro, sr

wait(tsafe > sr)
return 

value(a)

wait(tsafe > sr)
return 

value(z)

a == 1

z == 2

sr =
TT.now()
.latest



Block-free RO-txn

txn 1:
x = r(a)
y = r(z) Client

Sa-m

Sn-z

r(z), ro, sr

r(a), ro, sr

return 
value(a,sr)

return 
value(z,sr)

a == 1

z == 2

sr = [some 
time < tsafe]



Summary

● Spanner
○ Sharded datastore where shards are Paxos groups
○ Transactions use Client-driven 2PL
○ Commit Wait

■ 2PC with waiting for the commit time to have passed and be safe to read

● SNOW
○ Read-only transaction algorithms cannot achieve strict serializability, non-blocking, one 

response, and write transactions that conflict, at the same time
○ Spanner RO txns are one of:

■ SOW (best consistency)
■ NOW (best latency)



Q&A


