
View Change Protocols
and Reconfiguration

COS 418: Distributed Systems
Lecture 9

Wyatt Lloyd

Housekeeping

• Midterm finally scheduled
• 10/24, 7-9pm, Computer Science 104
• Talk to me after if you have a conflict

• Final also scheduled
• 1/23, 730pm, Friend Center 101

• Assignment 2 due Thursday
• Where I was last week

• Global tables in DynamoDB!

1. More primary-backup replication

2. View changes

3. Reconfiguration

3

Today

• Nominate one replica primary
• Clients send all requests to primary
• Primary orders clients’ requests

Review: Primary-Backup Replication

4

add jmp mov shl
Log

Logging
Module

State
Machine

add jmp mov shl
Log

Logging
Module

State
Machine

Clients

shl

Servers

• Last time: Primary-Backup case study

• Today: State Machine Replication with many replicas
• Survive more failures

5

From Two to Many Replicas

add jmp mov shl
Log

Logging
Module

State
Machine

add jmp mov shl
Log

Logging
Module

State
Machine

add jmp mov shl
Log

Logging
Module

State
Machine

Clients

shl

Servers

• State Machine Replication for any number of replicas

• Replica group: Group of 2f + 1 replicas
• Protocol can tolerate f replica crashes

Viewstamped Replication Assumptions:

1. Handles crash failures only
• Replicas fail only by completely stopping

2. Unreliable network: Messages might be lost,
duplicated, delayed, or delivered out-of-order

6

Intro to “Viewstamped Replication”

1. configuration: identities of all 2f + 1 replicas

2. In-memory log with clients’ requests in assigned order

7

Replica State

⟨op1, args1⟩ ⟨op2, args2⟩ ⟨op3, args3⟩ ⟨op4, args4⟩ ...

1. Primary adds request to end of its log

2. Replicas add requests to their logs in primary’s log order

3. Primary waits for f PrepareOKs à request is committed
8

Normal Operation

Client

A (Primary)

B

C
Time à

Request Prepare PrepareOK Reply

Execute

(f = 1)

• Protocol provides state machine replication

• On execute, primary knows request in f + 1 = 2 nodes’ logs
• Even if f = 1 then crash, ≥ 1 retains request in log

9

Normal Operation: Key Points

Client

A (Primary)

B

C
Time à

Request Prepare PrepareOK Reply

Execute

(f = 1)

• Previous Request’s commit piggybacked on current
Prepare

• No client Request after a timeout period?
• Primary sends Commit message to all backups

10

Piggybacked Commits

Client

A (Primary)

B

C
Time à

Request Prepare PrepareOK Reply

Execute

(f = 1)

+Commit previous

• So far: Works for f failed backup replicas

• But what if the f failures include a failed primary?
• All clients’ requests go to the failed primary
• System halts despite merely f failures

11

The Need For a View Change

1. More primary-backup replication

2. View changes
• With Viewstamped Replication
• Using a View Server

3. Reconfiguration

12

Today

• Let different replicas assume role of primary over
time

• System moves through a sequence of views
• View = (view number, primary id, backup id, ...)

13

Views

P

P
P

View #1

View #2

View #3

• Backup replicas monitor primary

• If primary seems faulty (no Prepare/Commit):
• Backups execute the view change protocol to select

new primary
• View changes execute automatically, rapidly

14

View Change Protocol

• Need to keep clients and replicas in sync:
same local state of the current view
• Same current view at replicas
• Same current view at clients

• View changes happen locally at each replica

• Old primary executes requests in the old view, new
primary executes requests in the new view

• Want to ensure state machine replication

• So correctness condition: Executed requests
1. Survive in the new view
2. Retain the same order in the new view

15

Correctly Changing Views

1. configuration: sorted identities of all 2f + 1 replicas

2. In-memory log with clients’ requests in assigned order

3. view-number: identifies primary in configuration list

4. status: normal or in a view-change

16

Replica State (for View Change)

1. B notices A has failed, sends Start-View-Change

2. C replies Do-View-Change to new primary, with its log

3. B waits for f replies, then sends Start-View

4. On receipt of Start-View, C replays log, accepts new ops
17

View Change Protocol

B (New Primary)

C
Time à

Start-
View

log

Start-View-
Change

view #

Do-View-
Change

log

(!) ++view #

(f = 1)

• Old primary A must have received one or two PrepareOK
replies for that request (why?)

• Request is in B’s or C’s log (or both): so it will survive into
new view

18

View Change Protocol: Correctness

B (New Primary)

C
Time àPrepareOK

Start-
View

log

Start-View-
Change

view #

Do-View-
Change

log

Executed request,
previous view

A (Old Primary)
Execute

(f = 1)

• Any group of f + 1 replicas is called a quorum

• Quorum intersection property: Two quorums in 2f + 1
replicas must intersect in at least one replica

19

Principle: Quorums
(f = 1)

et cetera

Normal Operation:

• Quorum that processes one request: Q1
• ...and 2nd request: Q2

• Q1 ∩ Q2 has at least one replica à
• Second request reads first request’s effects

20

Applying the Quorum Principle

View Change:

• Quorum processes previous (committed) request: Q1
• ...and that processes Start-View-Change: Q2

• Q1 ∩ Q2 has at least one replica à
• View Change contains committed request

21

Applying the Quorum Principle

• What’s undesirable about this sequence of events?

• Why won’t this ever happen? What happens instead?
22

Split Brain

Client 1

A (Primary)

C

Network partition

Client 2

Start-ViewStart-VC

Execute Execute

(not all protocol messages shown)

Request Request

Execute

Request

Execute

Request

B (New Primary)

1. More primary-backup replication

2. View changes
• With Viewstamped Replication
• Using a View Server

3. Reconfiguration

23

Today

• A single View Server could decide who is primary
• Clients and servers depend on view server

• Don’t decide on their own (might not agree)

• Goal in designing the View Server:
• Only one primary at a time for correct state machine

replication

24

Would Centralization Simplify Design?

• For now, assume View Server never fails

• Each replica periodically pings the View Server
• VS declares replica dead if missed N pings in a row
• VS considers replica alive after a single ping received

• Problem: Replica can be alive but because of
network connectivity, be declared “dead”

25

View Server Protocol Operation

26

View Server: Split Brain

S1

Client

(1, S1, S2)
(2, S2, −)

S2

View Server

(1, S1, S2)

(2, S2, −)

27

One Possibility: S2 in Old View

S1

Client

(1, S1, S2)
(2, S2, −)

S2

View Server

(1, S1, S2)

(1, S1, S2)
(1, S1, S2)(2, S2, −)

(2, S2, −)

28

Also Possible: S2 in New View

S1

Client

(1, S1, S2)
(2, S2, −)

S2

View Server

(1, S1, S2)

(1, S1, S2)(2, S2, −)
(2, S2, −)

Take-away points:

• Split Brain problem can be avoided both:
• In a decentralized design (Viewstamped Replication)
• With centralized control (View Server)

• But protocol must be designed carefully so that
replica state does not diverge

29

Split Brain and View Changes

1. More primary-backup replication

2. View changes

3. Reconfiguration

30

Today

• What if we want to replace a faulty replica with a
different machine?

• For example, one of the backups may fail permanently

• What if we want to change the replica group size?
• Decommission a replica
• Add another replica (increase f, possibly)

31

The Need for Reconfiguration

• Protocol that handles these possibilities is called
the reconfiguration protocol

1. configuration: sorted identities of all 2f + 1 replicas

2. In-memory log with clients’ requests in assigned order

3. view-number: identifies primary in configuration list

4. status: normal or in a view-change

5. epoch-number: indexes configurations

32

Replica State (for Reconfiguration)

• Primary immediately stops accepting new requests

33

Reconfiguration (1)

Client

A (Primary)

B

C (remove)

Time à

Reconfiguration Prepare PrepareOK

new-config

D (add)

(f = 1)

• Primary immediately stops accepting new requests

• No up-call to RSM for executing this request
34

Reconfiguration (2)

Client

A (Primary)

B

C (remove)

Time à

Reconfiguration

new-config

D (add)

Reply

Pr
ep

ar
e,

Pr

ep
ar

eO
K

(f = 1)

• Primary sends Commit messages to old replicas

• Primary sends StartEpoch message to new replica(s)
35

Reconfiguration (3)

Client

A (Primary)

B

C (remove)

Time à

Reconfiguration

new-config

D (add)

Reply

Pr
ep

ar
e,

Pr

ep
ar

eO
K

Commit

StartEpoch

(f = 1)

1. Update state with new epoch-number
2. Fetch state from old replicas, update log
3. Send EpochStarted msgs to replicas being removed

36

Reconfiguration in New Group {A, B, D}

Client

A (Primary)

B

C (remove)

Time à

Reconfiguration

new-config

D (add)

Reply

Pr
ep

ar
e,

Pr

ep
ar

eO
K

EpochStarted

Commit

StartEpoch

1. Respond to state transfer requests from others
• Waits until it receives f’ + 1 EpochStarteds, f’ is fault tolerance of new epoch

2. Send StartEpoch messages to new replicas if they don’t hear
EpochStarted (not shown above)

37

Reconfiguration at Replaced Replica {C}

Client

A (Primary)

B

C (remove)

Time à

Reconfiguration

new-config

D (add)

Reply

Pr
ep

ar
e,

Pr

ep
ar

eO
K

EpochStarted

Commit

StartEpoch

• If admin doesn’t wait for reconfiguration to complete
and decommissions old nodes, may cause > f failures
in old group

• Can’t shut down replicas on receiving Reply at client

• Must ensure committed requests survive
reconfiguration!

• Fix: A new type of request CheckEpoch reports the
current epoch

• Goes thru normal request processing (again no upcall)
• Return indicates reconfiguration is complete
• Q: Why not have reconfigure wait for this to complete?

38

Shutting Down Old Replicas

• Backups fail or has network connectivity problems?
• Minority partitioned from primary?

à Quorums allow primary to continue

• Primary fails or has network connectivity problems?
• Majority partitioned from primary?

à Rapidly execute view change

• Replica permanently fails or is removed?
• Replica added?

à Administrator initiates reconfiguration protocol
39

Conclusion: What’s Useful When

