View Change Protocols
and Reconfiguration

f| vET [Nov (8
TES | TAM
fi| Ex [TvMm (Y

COS 418: Distributed Systems
Lecture 9

Wyatt Lloyd

Housekeeping

* Midterm finally scheduled
* 10/24, 7-9pm, Computer Science 104
* Talk to me after if you have a conflict

* Final also scheduled
« 1/23, 730pm, Friend Center 101

* Assignment 2 due Thursday

* Where | was last week
« Global tables in DynamoDB!

Today

1. More primary-backup replication
2. View changes

3. Reconfiguration

Review: Primary-Backup Replication

 Nominate one replica
 Clients send all requests to primary
* Primary orders clients’ requests

mmmmmmm Clients

f Logginw*ng StNe

Module achine ofule Madhine

@?@ R @
‘

Log Log\ Servers

add| jmp | mov add| jmp | mov

N U\ J

From Two to Many Replicas

CEEEHEEEE
~

°.
shl

4 Logging S Logging L04'
Module achine Module achine o

m rﬁ ‘m fﬁ rﬁ Servers
jmp

add| jmp | mov| s add| jmp | mov| s

N\ AR DA i,

 Last time: Primary-Backup case study

» Today: State Machine Replication with many replicas
» Survive more failures

Intro to “Viewstamped Replication”

« State Machine Replication for any number of replicas

Group of 2f + 1 replicas
* Protocol can tolerate f replica crashes

Viewstamped Replication Assumptions:

1. Handles crash failures only
* Replicas fail only by completely stopping

2. Unreliable network: Messages might be lost,
duplicated, delayed, or delivered out-of-order

Replica State

identities of all 2f + 1 replicas

2. In-memory with clients’ requests in assigned order

Normal Operation

(f=1)

Request : Prepare : PrepareOK Reply
Client 1 I

\ | | Execute /

A (Primary) I : 3%

l |
B i i
l |
l |
C I I

Time =

1. Primary adds request to end of its log
2. Replicas add requests to their logs in primary’s log order

3. Primary PrepareOKs - request is

Normal Operation: Key Points

(f=1)

Request Prepare PrepareOK Reply

Client

Execute

A (Primary)
C

Time =

* Protocol provides state machine replication

* On execute, primary knows request in f + 1 = 2 nodes’ logs
* Even if f =1 then crash, = 1 retains request in log

Piggybacked Commits

(f=1)
Request Prepare PrepareOK Reply
Client +Commit previous
Execute

A (Primary)
B % ?
C

Time -
* Previous Request’s commit on current

Prepare

* No client Request after a timeout period?
* Primary sends Commit message to all backups

10

The Need For a View Change

» So far: Works for f failed backup replicas

« But what if the f failures include a failed primary?
* All clients’ requests go to the failed primary
« System halts despite merely f failures

CEEEEEE

11

Today

1. More primary-backup replication

2. View changes
 With Viewstamped Replication
« Using a View Server

3. Reconfiguration

12

Views

s Let assume role of primary over
time

« System moves through a sequence of views

(wevag irmrir}il?%ruprlmary id, backup id, ...)

Do 8D

&: View #3

View #1

13

View Change Protocol

* Backup replicas monitor primary

* If primary seems faulty (no Prepare/Commit):

 Backups execute the to select
new primary
« View changes execute automatically, rapidly

* Need to keep clients and replicas in sync:
same local state of the current view
« Same current view at replicas
« Same current view at clients

Correctly Changing Views

* View changes happen locally at each replica

 Old primary executes requests in the old view, new
primary executes requests in the new view

 Want to ensure state machine replication

* So correctness condition: Executed requests
1. Survive in the new view
2. Retain the same order in the new view

Replica State (for View Change)

1. configuration: iIdentities of all 2f + 1 replicas
2. In-memory log with clients’ requests in assigned order
identifies primary in configuration list

normal or in a view-change

16

View Change Protocol

(f=1)

Start-View- :Do -View- | Start-
() ++view # Change

! IChange I View
B (New Primary) Qe.w "
C

/"9 \Lt
1. B notices A has failed, sends Start-View-Change

Time >

2. C replies Do-View-Change to new primary, with its log
3. B waits for f replies, then sends Start-View

4. On receipt of Start-View, C replays log, accepts new ops

View Change Protocol: Correctness

1)

_ Execute
A (Old Primary) Start-View- Do-View- Start-
Change Change View
B (New Primary) Qiew " / O \Og
log
C

PrepareOK Time =

Executed request,
previous view

 Old primary A must have received one or two PrepareOK
replies for that request (why?)

* Requestis in B’s or C’s log (or both): so it will survive into
new view

18

Principle: Quorums

(f=1)

et cetera

* Any group of f + 1 replicas is called a

Two quorums in 2f + 1

replicas must intersect in at least one replica

19

Applying the Quorum Principle

Normal Operation:

« Quorum that processes one request: Q1
e ...and 2" request: Q2

* Q1 n Q2 has at least one replica >
« Second request reads first request’s effects

Applying the Quorum Principle

View Change:

* Quorum processes previous (committed) request: Q1
» ...and that processes Start-View-Change: Q2

* Q1 n Q2 has at least one replica 2>
* View Change contains committed request

Split Brain

(not all protocol messages shown)

Request Request

Client 1 \ \
Execute Execute
Yo e

A (Primary)

Network partition

‘A7Execute *Execute

B (New Prlrr;?gt?vg\ /\ sorvion 45

C

Request Request

Client 2

 What’s undesirable about this sequence of events?

 Why won'’t this ever happen? What happens instead?
22

Today

1. More primary-backup replication

2. View changes
 With Viewstamped Replication
« Using a View Server

3. Reconfiguration

23

Would Centralization Simplify Design?

* A single could decide who is primary

- Clients and servers depend on view server _ 4/
* Don’t decide on their own (might not agree) i

» Goal in designing the View Server:

* Only at a time for correct state machine
replication

A
View Server Protocol Operation I

* For now, assume View Server never fails

« Each replica periodically pings the View Server
VS declares replica dead if missed N pings in a row
« VS considers replica alive after a single ping received

* Problem: Replica can be alive but because of
network connectivity, be declared “dead”

25

View Server: Split Brain

One Possibility: S, in Old View

27

Also Possible: S, in New View

Split Brain and View Changes

Take-away points:

 Split Brain problem can be avoided both:
* In a decentralized design (Viewstamped Replication)
* With centralized control (View Server)

» But protocol must be designed carefully so that
replica state does not diverge

Today

1. More primary-backup replication
2. View changes

3. Reconfiguration

30

The Need for Reconfiguration

 What if we want to replace a faulty replica with a
different machine?

* For example, one of the backups may fail permanently

 What if we want to change the replica group size?
« Decommission a replica
« Add another replica (increase f, possibly)

* Protocol that handles these possibilities is called
the

Replica State (for Reconfiguration)

configuration: sorted identities of all 2f + 1 replicas
In-memory log with clients’ requests in assigned order
view-number: identifies primary in configuration list
status: normal or in a view-change

5. epoch-number: indexes configurations

32

Reconfiguration (1)

(f=1)

Reconfiguration . Prepare PrepareOK

Client :
new-conflg\

A (Primary)

C (remove)

D (add)
Time 2

* Primary immediately accepting new requests

33

Reconfiguration (2)

(f=1)

Reconfiguration Reply
Client :
new-conflg\ /
A (Primary) dé —
QO
B 24
o
C (remove) a
D (add)

Time =

* Primary immediately stops accepting new requests

* No up-call to RSM for this request

34

Reconfiguration (3)

Reconfiguration

(F=1)

Reply

Client

new-confi

A (Primary)
B

C (remove)

D (add)

Prepare,
PrepareOK

/
24

Time =

* Primary sends Commit messages to old replicas

* Primary sends

message to new replica(s)

35

Reconfiguration in New Group {A, B, D}

Reconfiguration Reply

Client)
neW-Conflg\ StartEpoch

Prepare,
PrepareOK

A (Primary)

B Commit %
C (remove)

D (add)

1. Update state with new epoch-number
2. Fetch state from old replicas, update log
3. Send msgs to replicas being removed

36

Time =

Reconfiguration at Replaced Replica {C}

Reconfiguration Reply EpochStarted

Client "
new-con |g\ / StartEpoch
Commit

Prepare,
PrepareOK

B
C (remove) -

A (Primary) % \
D (add)

~~—

Time =

1. Respond to state transfer requests from others
« Waits until it receives f’ + 1 EpochStarteds, f’ is fault tolerance of new epoch

2. Send StartEpoch messages to new replicas if they don’t hear
EpochStarted (not shown above)

37

Shutting Down Old Replicas

* If admin doesn’t wait for reconfiguration to complete
and decommissions old nodes, may cause > f failures
in old group

« Can’t shut down replicas on receiving Reply at client

* Must ensure committed requests survive
reconfiguration!

* Fix: A new tyﬁe of request reports the
current epoc
« Goes thru normal request processing (again no upcall)
* Return indicates reconfiguration is complete
* Q: Why not have reconfigure wait for this to complete?

Conclusion: What’s Useful When

« Backups fail or has network connectivity problems?
* Minority partitioned from primary?

* Primary fails or has network connectivity problems?
* Majority partitioned from primary?

* Replica permanently fails or is removed?
* Replica added?

