Content Distribution Networks (CDNs)

COS 418: Distributed Systems Lecture 21

Wyatt Lloyd

Content Distribution Networks

- Why & Overview
- Load Balancing
- Caching Algorithms
- Hierarchy

Anatomy of a Web Page Fetch

- Web page = HTML file + embedded images/objects
- HTML page does not embed objects in it
 - Q: Why not?

Serve It All From Datacenters?

Asia

- High latency for many clients 🛞
- Use a ton of bandwidth to send the same objects over and over ☺

Serve Objects From CDN

- Lower latency because content is closer [©]
- Less global bandwidth 🙂

CDN Locations

- Where can we stick machines?
- Inside our datacenters
- At colocation facilities (other people's DCs)
- At Internet Exchange Points
- Inside others' networks

Not *that* many machines (limited space and/or high cost)

CDN Locations vs Datacenters

- There are many more CDN locations
 - e.g., Akamai has 1000+
- CDNs are closer to people
 - Because there are more of them
 - Placed for locality
- CDN locations are much wimpier
 - Maybe 1 rack (~40 machines)
 - •
 - Maybe 8 racks (~320 machines)


```
What do
we store
on them?
```

Content Distribution Networks

- Why & Overview
- Load Balancing
 - (Which CDN location do clients connect to?)
- Caching Algorithms
 - (What do we store on them?)
- Hierarchy

CDN Load Balancing

- Which of 1000+ options do I go to?
- Goals?
 - Nearby (lower latency)
 - Not overloaded (works)
 - (Cheaper bandwidth)
 - •

Load Balancing with IP Anycast

- IP Anycast
 - Multiple machines announce, "I am 1.2.3.4"
 - Internet routing sends packet to one of them
- Nearby?
 - Internet routing often sends packets to nearby machine!
 - (Take 461 in the spring to learn about BGP)
- Not overloaded?
 - Internet routing has no idea...
- Microsoft's First-Party CDN (Bing, Xbox) uses it
 - (With additional cleverness to deal with overload)

Load Balancing with DNS

- DNS: Global, distributed, eventually consistent database that maps names to IP addresses
 - E.g., "cs.princeton.edu" -> "128.112.136.35"
- Give clients urls, then regularly update mapping in DNS from urls to IP addresses
 - Detailed elided, take 461 in the spring!
- Nearby?
 - DNS protocol often allows nearby matching
- Not overloaded?
 - Regularly updating mapping allows *pretty good* load balancing
 - e.g., If location X is heavily loaded, stop sending clients to it

Load Balancing with DC Control

- Datacenter based control: tell clients what CDN location to go to directly in url
 - e.g., ewr.cs.princeton.edu -> location near newark
- Nearby?
 - Yes, assuming you actually know where clients are
 - (true for DNS as well)
- Not overloaded?
 - Yes, fine-grained control per client

Content Distribution Networks

- Why & Overview
- Load Balancing
 - (Which CDN location do clients connect to?)
 - Several options, all of which are interesting distributed systems designed to work with internet routing
- Caching Algorithms
 - (What do we store on them?)
- Hierarchy

CDN Locations Store What?

- Store everything?
 - f4 at FB stored over 65PBs of photos/videos as of 2014[OSDI'14]
 - 1 rack (40 machines):
 - 144 GB memory? * 40 -> 5.8TB memory ... not even close...
 - 10x4 TB HDD? * 40 -> 1.6 PB ... not even close...
- Need to store a subset of objects!
 - Q: But which objects to store?

CDN Cache Hit

CDN Cache Miss

If I want to store X, what do I get rid of to make space?

Cache Algorithms 101

- First In First Out (FIFO)
 - Get rid of item put into the cache longest ago
- Least recently used (LRU)
 - Get rid of item in cache that was used longest ago
 - (Update access time on hit)
- Least frequently used (LFU)
 - Get rid of item in cache that was used the fewest number of time
 - (Update count on hit)

Content Distribution Networks

- Why & Overview
- Load Balancing
 - (Which CDN location do clients connect to?)
- Caching Algorithms
 - (What do we store on them?)
- Hierarchy
 - [Slides from Qi Huang's SOSP 2013 Talk]

Haystack Backend

How Effective Was Facebook's CDN?

CDN Effectiveness [SOSP '13]

Can It Be Improved?

Edge Cache with Different Sizes

Cache size

• Picked San Jose edge (high traffic, median hit ratio)

Edge Cache with Different Sizes

• "x" estimates current deployment size (59% hit ratio)

Edge Cache with Different Sizes

• "Infinite" size ratio needs 45x of current capacity

Edge Cache with Different Algos

Both LRU and LFU outperforms FIFO slightly

Edge Cache with Different Algos

• S4LRU improves the most

Edge Cache with Different Algos

Clairvoyant (Bélády) shows much improvement space

Origin Cache

S4LRU improves Origin more than Edge

Content Distribution Networks

- Serve "objects" in web pages, and much more, e.g., video segments
- Load Balancing: Which CDN location?
 - Several options, all of which are interesting distributed systems designed to work with internet routing
- Caching Algorithms: What do we store on them?
 FIFO, LRU, LFU, ... active area of research
- Facebook's CDN
 - Hierarchy, effectiveness, improvements