
SVE: Distributed Video Processing at
Facebook Scale

Facebook, University of Southern California, Cornell, Princeton

Petchean Ang, Peter Knowles, Tomasz Nykiel, Iaroslav Tverdokhlib,
Amit Yajurvedi, Paul Dapolito IV, Xifan Yan, Maxim Bykov, Chuen Liang, Mohit
Talwar, Abhishek Mathur, Sachin Kulkarni, Matthew Burke, Wyatt Lloyd

Qi Huang

Video is growing across Facebook

• FB: 500M users watch 100M hours video daily (Mar. 16)
• Instagram: 250M daily active users for stories (Jun. 17)
• All: many tens of millions of daily uploads, 3X NYE spike

01

Processing

Processing is diverse and demanding

Input
video

Re-encoding

Thumbnail

Video
Classification

Pt. 1
Legacy System

Scaling Challenges

Pt. 2
SVE

Impact of Design

02

Web ServerClient

She is having so much fun with #MSQRD

Legacy: upload video file to web server

03

Web ServerClient
Original
Storage

Legacy: preserve original for reliability

She is having so much fun with #MSQRD

04

Original
StorageWeb ServerClient

She is having so much fun with #MSQRD

Legacy: process after upload completes
Processing

05

Original
StorageWeb ServerClient

She is having so much fun with #MSQRD

Legacy: encode w/ varying bitrates
Processing

1080P
16Mbps

720P
4Mbps

480P
1.5Mbps

06

Final
Storage

Original
StorageWeb ServerClient

She is having so much fun with #MSQRD

Legacy: store encodings before sharing
Processing

1080P
16Mbps

720P
4Mbps

480P
1.5Mbps

07

Client
Final

Storage

Sharing with adaptive streaming

FBCDN

Web Server

720p
480p

08

Client Web Server Original
Storage Processing Final

Storage

Focus: pre-sharing pipeline

All steps from when a user starts an upload until a
video is ready to be shared

09

Original
Storage Processing Final

Storage

Serial pipeline leads to slow processing

Client Web Server

10

Client Web Server Original
Storage

Final Blob
Storage

Monolithic script slows development

Processing

“Let’s experiment speech recognition,
add a logic to extract audio and analysis”

“We want to experiment AI-based
encodings to spend 10x CPU for 30%

compression improvement on
popular videos”

“Pass-through for
small and well-

formatted videos”

“Change color
coding at

different time” “We need to change the thumbnail
generation logic for videos > x
minutes to create scene-based

scrubber preview”

11

Challenges for video processing @ FB
Speedy

Users can share videos quickly

Flexible
Thousands of engineers can write pipelines for tens of apps

Robust
Handle faults and overload that is inevitable at scale

12

Our Streaming Video Engine (SVE)
is speedy, flexible, and robust

13

• Overlap fault tolerance and processing
• Overlap upload and processing
• Parallel processing

Speedy: harness parallelism
Users can share videos quickly

14

Architectural changes for parallelism

Client Web Server Original
Storage Processing Final

Storage

15

Architectural changes for parallelism

Client Web Server Final
Storage

Original
Storage

Worker

Scheduler

Preprocessor
Worker

Worker

16

Overlap fault tolerance and processing

Client Web Server Final
Storage

Original
Storage

Worker

Scheduler

Preprocessor
Worker

Worker

Write-through
Cache

17

Client Web Server

Split into segments

Final
Storage

Overlap upload and processing

Original
Storage

Scheduler

Preprocessor

Worker

Worker

Worker

18

Preprocessor
Client Web Server

Final
Storage

Overlap upload and processing

Original
Storage

Scheduler

Worker

Worker

...upload in progress

Worker

19

Preprocessor
Client Web Server

Final
Storage

Parallel processing w/ many workers

Original
Storage

Scheduler

Worker

Worker

Worker

...upload in progress

720P Encode

480P Encode

Thumbnail

20

Preprocessor
Client Web Server

Final
Storage

Parallel processing w/ many workers

Original
Storage

Scheduler

...upload in progress

720P Encode

480P Encode

Thumbnail

21

Preprocessor
Client Web Server

Final
Storage

Parallel processing w/ many workers

Original
Storage

Scheduler

...upload in progress

720P Encode

480P Encode

Thumbnail

22

Preprocessor
Client Web Server

Final
Storage

Parallel processing w/ many workers

Original
Storage

Scheduler

Worker

Worker

Worker

23

Preprocessor
Client Web Server

Final
Storage

Three sources of parallelism

Original
Storage

Scheduler

Worker

Worker

Worker
Overlap fault tolerance
and processing
Overlap upload and processing
Parallel processing

24

2.3
3

3.7

6.1

9.3

0

10

< 3M 3M ~ 10M 10M ~ 100M 100M ~ 1G >1G

Video size buckets

R
el

at
iv

e
sp

ee
du

p
Results: 2.3x ~ 9.3x speedup

25

2.3
3

3.7

6.1

9.3

0

10

< 3M 3M ~ 10M 10M ~ 100M 100M ~ 1G >1G

Video size buckets

R
el

at
iv

e
sp

ee
du

p
Results: 2.3x ~ 9.3x speedup

Overlap upload & processing

26

2.3
3

3.7

6.1

9.3

0

10

< 3M 3M ~ 10M 10M ~ 100M 100M ~ 1G >1G

Video size buckets

R
el

at
iv

e
sp

ee
du

p
Results: 2.3x ~ 9.3x speedup

Parallel Processing

27

Challenges for video processing @ FB
Speedy

Users can share videos quickly

Flexible
Thousands of engineers can write pipelines for tens of apps

Robust
Handle faults and overload that is inevitable at scale

2.3x ~ 9.3x speedup

28

• DAG of computation on the stream-of-tracks abstraction
• Engineers write only sequential tasks in a familiar

language
• Dynamic DAG generation per video

Flexible: build DAG framework
Thousands of engineers can write pipelines for tens of apps

29

$pipeline = Pipeline.build()

$video_track=$pipeline>addTrack(IMG_TYPE)
->addTask()

$audio_track=$pipeline>addTrack(AUD_TYPE)
->addTask()

$meta_track=$pipeline>addTrack(META_TYPE)
->addTask()

DAG on stream-of-tracks abstraction

Sound

Metadata

Images

Track

Input
video

30

$pipeline = Pipeline.build()

$video_track=$pipeline>addTrack(IMG_TYPE)
->addTask()

$audio_track=$pipeline>addTrack(AUD_TYPE)
->addTask()

$meta_track=$pipeline>addTrack(META_TYPE)
->addTask()

DAG on stream-of-tracks abstraction

Track

Encode(HD)

Encode(SD)

Thumbnail

Tasks

Analysis

Encode(AAC)

->addTask(Encode(HD), Encode(SD), Thumb)

->addTask(Encode(AAC))

->addTask(Analysis)

->addTask(Encode(HD, 10s),
Encode(SD, 10s), Thumb(10s))

Sound

Metadata

Images

31

DAG on stream-of-tracks interface

Track

Encode(HD)

Encode(SD)

Thumbnail

Tasks

Analysis

Encode(AAC)

Encode(HD, 10sec)

Encode(SD, 10sec)

Thumbnail(10sec)

Cnt Segments

Cnt Segments

Cnt Segments

Notification

Video
Classification

Combine
Tracks

Sync Point Tasks

Sound

Metadata

Images

32

Preprocessor

Dynamic DAG Generation

Worker

Scheduler

Web Server

Worker

Worker

DAG
Generation

Code

Cache

Worker

DAG Structure

$pipeline = Pipeline.build()

$video_track=$pipeline>addTrack(IMG_TYPE)
->addTask()

$audio_track=$pipeline>addTrack(AUD_TYPE)
->addTask()

$meta_track=$pipeline>addTrack(META_TYPE)
->addTask()

33

Encode(SD)

Encode(AAC)

Analysis

Encode(HD)

Preprocessor

Dynamic DAG Generation

Web Server
DAG

Generation
Code

Cache

Scheduler

DAG Structure

34

Preprocessor

Dynamic DAG Generation

Worker

Scheduler

Web Server

Worker

Worker

DAG
Generation

Code

Cache

Worker

DAG Structure

$pipeline = Pipeline.build()

$video_track=$pipeline>addTrack(IMG_TYPE)
->addTask()

$audio_track=$pipeline>addTrack(AUD_TYPE)
->addTask()

$meta_track=$pipeline>addTrack(META_TYPE)
->addTask()

35

• Generate billions of tasks per day
• Varying DAG size
• 360 video has thousands of tasks per upload
• Newsfeed post averages at 153 tasks per upload
• Instagram averages at 22 tasks per upload
• Messenger averages at 18 tasks per upload

One system for 15+ applications

36

Challenges for video processing @ FB
Speedy

Flexible

Robust
Handle faults and overload that is inevitable at scale

2.3x ~ 9.3x speedup

Thousands of engineers can write pipelines for tens of appsOne system for 15+ applications

37

• Rely on priority to degrade non-latency-sensitive tasks
• Defer full video processing for some new uploads
• Load-shedding across global deployments

Robust: tolerate overload
Handle faults and overload that is inevitable at scale

38

3X peak load during New Year Eve

3X

Date

U
pl

oa
d

vo
lu

m
e Xmas

NYE

39

Prepare for overload

Client Web Server Final Blob
Storage

Original
Storage

Worker

Scheduler

Preprocessor
Worker

Worker

Worker

Worker

Worker

Preprocessor

40

Use priority for worker overload

Scheduler

Hi-priority queue

Low-priority queue

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Only assign hi-pri tasks
under overload

41

Preprocessor

Defer full video processing

Web Server
DAG

Generation
Code

Cache

Scheduler

Hi-priority queue

Original
Storage

42

Scheduler

Worker

Worker

Worker

Preprocessor

Regional redirection

Web Server
Scheduler

Worker

Worker

Worker

Preprocessor

Traffic:

Local distribution → 100%

Traffic:

Local distribution → 70%
Remote distribution → 30%

43

Challenges for video processing @ FB
Speedy

Flexible

Robust
Handle faults and overload that is inevitable at scale

2.3x ~ 9.3x speedup

One system for 15+ applications

Tolerate 3x traffic spike

44

• Advanced DAG control
• Task group: batch multiple tasks for schedule
• Priority control: annotate latency-sensitive task
• Optional task: okay to fail or skip
• Customizable error handling: early termination

• Failure monitoring and recovery
• Overload scenario caused by Kraken and system bugs
• Lessons learned

More details in paper

45

One preprocessor handles all
segments of one video

Mapping from video to
preprocessor determined when
upload starts

Storage system is eventually
consistent, what could go wrong?

Failures from Global Inconsistencies
Lesson Learned

preprocessor = null

if (segment.is_first_segment()) {
preprocessor = get_preprocessor()
storage_write(video_id, “preprocessor”, preprocessor)

} else {
preprocessor = storage_read(video_id, “preprocessor”)

}

forward_segment(preprocessor, segment)

• Batch processing
•MapReduce, Dryad, Piccolo, CIEL, Spark, Naiad

• Stream processing
• STREAM, Aurora, Spark streaming, JetStream, StreamScope

• Video processing at scale
•Netflix, ExCamera, Chess-VPS, VideoStorm

Related work

SVE overlaps data ingestion and processing

SVE offers dynamic DAG generation per input

SVE support many production apps
46

• Deployed in production for 2 years

• Speedy to enable users to share videos quickly
• Harness parallelism in upload, processing, and storage

• Flexible to support 15 app with tens of millions of uploads/day
• Dynamic DAG generation on the stream-of-tracks abstraction

• Robust to tolerate faults and overload at scale
• Prioritize processing and then shed load to other DCs or the future

Streaming Video Engine

47

