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Video is growing across Facebook

• FB: 500M users watch 100M hours video daily (Mar. 16)
• Instagram: 250M daily active users for stories (Jun. 17)
• All: many tens of millions of daily uploads, 3X NYE spike
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Processing

Processing is diverse and demanding

Input 
video

Re-encoding

Thumbnail

Video 
Classification

Pt. 1
Legacy System

Scaling Challenges

Pt. 2
SVE

Impact of Design
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Web ServerClient

She is having so much fun with #MSQRD

Legacy: upload video file to web server
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Web ServerClient
Original
Storage

Legacy: preserve original for reliability

She is having so much fun with #MSQRD
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Original
StorageWeb ServerClient

She is having so much fun with #MSQRD

Legacy: process after upload completes
Processing
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Original
StorageWeb ServerClient

She is having so much fun with #MSQRD

Legacy: encode w/ varying bitrates
Processing

1080P 
16Mbps

720P
4Mbps

480P
1.5Mbps
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Final 
Storage

Original
StorageWeb ServerClient

She is having so much fun with #MSQRD

Legacy: store encodings before sharing
Processing

1080P 
16Mbps

720P
4Mbps

480P
1.5Mbps
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Client
Final 

Storage

Sharing with adaptive streaming

FBCDN

Web Server

720p
480p
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Client Web Server Original
Storage Processing Final

Storage

Focus: pre-sharing pipeline

All steps from when a user starts an upload until a 
video is ready to be shared
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Original
Storage Processing Final

Storage

Serial pipeline leads to slow processing

Client Web Server
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Client Web Server Original
Storage

Final Blob 
Storage

Monolithic script slows development

Processing

“Let’s experiment speech recognition, 
add a logic to extract audio and analysis” 

“We want to experiment AI-based 
encodings to spend 10x CPU for 30% 

compression improvement on 
popular videos” 

“Pass-through for 
small and well-

formatted videos” 

“Change color 
coding at 

different time” “We need to change the thumbnail 
generation logic for videos > x 
minutes to create scene-based 

scrubber preview” 
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Challenges for video processing @ FB
Speedy

Users can share videos quickly

Flexible
Thousands of engineers can write pipelines for tens of apps

Robust
Handle faults and overload that is inevitable at scale
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Our Streaming Video Engine (SVE)
is speedy, flexible, and robust
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• Overlap fault tolerance and processing
• Overlap upload and processing
• Parallel processing

Speedy: harness parallelism
Users can share videos quickly
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Architectural changes for parallelism

Client Web Server Original
Storage Processing Final

Storage
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Architectural changes for parallelism

Client Web Server Final
Storage

Original
Storage

Worker
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Preprocessor
Worker

Worker
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Overlap fault tolerance and processing

Client Web Server Final
Storage

Original
Storage
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Cache
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Client Web Server

Split into segments

Final
Storage

Overlap upload and processing

Original
Storage
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Worker

Worker

Worker

18



Preprocessor
Client Web Server

Final
Storage

Overlap upload and processing

Original
Storage

Scheduler

Worker

Worker

...upload in progress

Worker
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Preprocessor
Client Web Server

Final
Storage

Parallel processing w/ many workers

Original
Storage

Scheduler

Worker

Worker

Worker

...upload in progress

720P Encode

480P Encode

Thumbnail
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Preprocessor
Client Web Server

Final
Storage

Parallel processing w/ many workers

Original
Storage

Scheduler

...upload in progress

720P Encode

480P Encode

Thumbnail
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Preprocessor
Client Web Server

Final
Storage

Parallel processing w/ many workers

Original
Storage

Scheduler

...upload in progress

720P Encode

480P Encode

Thumbnail
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Preprocessor
Client Web Server

Final
Storage

Parallel processing w/ many workers

Original
Storage

Scheduler

Worker

Worker

Worker
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Preprocessor
Client Web Server

Final
Storage

Three sources of parallelism

Original
Storage

Scheduler

Worker

Worker

Worker
Overlap fault tolerance 
and processing
Overlap upload and processing
Parallel processing
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Challenges for video processing @ FB
Speedy

Users can share videos quickly

Flexible
Thousands of engineers can write pipelines for tens of apps

Robust
Handle faults and overload that is inevitable at scale

2.3x ~ 9.3x speedup
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• DAG of computation on the stream-of-tracks abstraction
• Engineers write only sequential tasks in a familiar 

language
• Dynamic DAG generation per video 

Flexible: build DAG framework
Thousands of engineers can write pipelines for tens of apps
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$pipeline = Pipeline.build()

$video_track=$pipeline>addTrack(IMG_TYPE)
->addTask()

$audio_track=$pipeline>addTrack(AUD_TYPE)
->addTask()

$meta_track=$pipeline>addTrack(META_TYPE)
->addTask()

DAG on stream-of-tracks abstraction

Sound

Metadata

Images

Track

Input
video
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$pipeline = Pipeline.build()

$video_track=$pipeline>addTrack(IMG_TYPE)
->addTask()

$audio_track=$pipeline>addTrack(AUD_TYPE)
->addTask()

$meta_track=$pipeline>addTrack(META_TYPE)
->addTask()

DAG on stream-of-tracks abstraction

Track

Encode(HD)

Encode(SD)

Thumbnail

Tasks

Analysis

Encode(AAC)

->addTask(Encode(HD), Encode(SD), Thumb)

->addTask(Encode(AAC))

->addTask(Analysis)

->addTask(Encode(HD, 10s), 
Encode(SD, 10s), Thumb(10s))

Sound

Metadata

Images
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DAG on stream-of-tracks interface

Track

Encode(HD)

Encode(SD)

Thumbnail

Tasks

Analysis

Encode(AAC)
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Preprocessor

Dynamic DAG Generation

Worker

Scheduler

Web Server

Worker

Worker

DAG 
Generation

Code

Cache

Worker

DAG Structure

$pipeline = Pipeline.build()

$video_track=$pipeline>addTrack(IMG_TYPE)
->addTask()

$audio_track=$pipeline>addTrack(AUD_TYPE)
->addTask()

$meta_track=$pipeline>addTrack(META_TYPE)
->addTask()
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Encode(SD)

Encode(AAC)

Analysis

Encode(HD)

Preprocessor

Dynamic DAG Generation

Web Server
DAG 
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DAG Structure
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Preprocessor

Dynamic DAG Generation

Worker

Scheduler

Web Server

Worker

Worker

DAG 
Generation

Code

Cache

Worker

DAG Structure

$pipeline = Pipeline.build()

$video_track=$pipeline>addTrack(IMG_TYPE)
->addTask()

$audio_track=$pipeline>addTrack(AUD_TYPE)
->addTask()

$meta_track=$pipeline>addTrack(META_TYPE)
->addTask()
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• Generate billions of tasks per day
• Varying DAG size
• 360 video has thousands of tasks per upload
• Newsfeed post averages at 153 tasks per upload
• Instagram averages at 22 tasks per upload
• Messenger averages at 18 tasks per upload

One system for 15+ applications
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Challenges for video processing @ FB
Speedy

Flexible

Robust
Handle faults and overload that is inevitable at scale

2.3x ~ 9.3x speedup

Thousands of engineers can write pipelines for tens of appsOne system for 15+ applications
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• Rely on priority to degrade non-latency-sensitive tasks
• Defer full video processing for some new uploads
• Load-shedding across global deployments 

Robust: tolerate overload
Handle faults and overload that is inevitable at scale
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3X peak load during New Year Eve
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Prepare for overload

Client Web Server Final Blob 
Storage

Original
Storage
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Use priority for worker overload

Scheduler

Hi-priority queue

Low-priority queue

Worker

Worker

Worker

Worker
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Only assign hi-pri tasks
under overload
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Preprocessor

Defer full video processing

Web Server
DAG 

Generation
Code
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Hi-priority queue

Original
Storage
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Scheduler

Worker

Worker

Worker

Preprocessor

Regional redirection

Web Server
Scheduler

Worker

Worker

Worker

Preprocessor

Traffic:

Local distribution → 100%

Traffic:

Local distribution → 70%
Remote distribution → 30%
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Challenges for video processing @ FB
Speedy

Flexible

Robust
Handle faults and overload that is inevitable at scale

2.3x ~ 9.3x speedup

One system for 15+ applications

Tolerate 3x traffic spike

44



• Advanced DAG control
• Task group: batch multiple tasks for schedule
• Priority control: annotate latency-sensitive task
• Optional task: okay to fail or skip
• Customizable error handling: early termination

• Failure monitoring and recovery
• Overload scenario caused by Kraken and system bugs
• Lessons learned

More details in paper
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One preprocessor handles all 
segments of one video

Mapping from video to 
preprocessor determined when 
upload starts

Storage system is eventually 
consistent, what could go wrong?

Failures from Global Inconsistencies
Lesson Learned

preprocessor = null

if (segment.is_first_segment()) {
preprocessor = get_preprocessor()
storage_write(video_id, “preprocessor”, preprocessor)

} else {
preprocessor = storage_read(video_id, “preprocessor”)

} 

forward_segment(preprocessor, segment)



• Batch processing
•MapReduce, Dryad, Piccolo, CIEL, Spark, Naiad

• Stream processing
• STREAM, Aurora, Spark streaming, JetStream, StreamScope

• Video processing at scale
•Netflix, ExCamera, Chess-VPS, VideoStorm

Related work

SVE overlaps data ingestion and processing

SVE offers dynamic DAG generation per input

SVE support many production apps
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• Deployed in production for 2 years

• Speedy to enable users to share videos quickly
• Harness parallelism in upload, processing, and storage

• Flexible to support 15 app with tens of millions of uploads/day
• Dynamic DAG generation on the stream-of-tracks abstraction

• Robust to tolerate faults and overload at scale
• Prioritize processing and then shed load to other DCs or the future

Streaming Video Engine
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