Big Data
Processing

f| vET [Nov (8
TES | TAM
fi| Ex [TvMm (Y

COS 418: Distributed Systems
Lecture 19

Wyatt Lloyd

Map Reduce
Review

Ex: Word count using partial aggregation

1. Compute word counts from individual files
2. Then merge intermediate output

3. Compute word count on merged outputs

Putting it together...

How much wood
would a woodchuck
chuck if a woodchuck
could chuck wood?

A woodchuck would
chuck a lot of wood
if a woodchuck
could chuck wood.

how
(how, 1), (much, 1), much
(wood, 1), (would, 1), wood
(a, 1), (woodchuck, 1), would

a

(chuck, 1), (if, 1), (a, 1),
(woodchuck, 1), (could, 1),
(chuck, 1), (wood, 1)

woodchuck
chuck
if
could

_m (= (NIN(N[= N ==

map combine

(a, 1), (woodchuck, 1), woodchuck
(would, 1), (chuck, 1), would
(a, 1), (lot, 1), (of, 1), chuck

(wood, 1), (if, 1), (a, 1),
(woodchuck, 1), (could,
1), (chuck, 1), (wood, 1)

partition

woodchuck

reduce

How much wood
would a woodchuck
chuck if a woodchuck
could chuck wood?

A woodchuck would
chuck a lot of wood
if a woodchuck
could chuck wood.

Synchronization

Barrier

how
(how, 1), (much, 1), much
(wood, 1), (would, 1), wood
(a, 1), (woodchuck, 1), would

a

(chuck, 1), (if, 1), (a, 1),
(woodchuck, 1), (could, 1),
(chuck, 1), (wood, 1)

woodchuck
chuck
if

could

(a, 1), (woodchuck, 1),
(would, 1), (chuck, 1),
(a, 1), (lot, 1), (of, 1),

(wood, 1), (if, 1), (a, 1),
(woodchuck, 1), (could,
1), (chuck, 1), (wood, 1)

_m (= (NIN(N[= N ==

woodchuck

Fault Tolerance in MapReduce

 Map worker writes intermediate output to local
disk, separated by partitioning. Once completed,
tells master node.

 Reduce worker told of location of map task
outputs, pulls their partition’s data from each
mapper, execute function across data

I * Note:

« “All-to-all” shuffle b/w mappers and reducers
* Written to disk (“materialized”) b/w each
stage

Generality vs
Specialization

General Systems

« Can be used for many different applications

« Jack of all trades, master of none

* Pay a generality penalty

* Once a specific application, or class of
applications becomes sufficiently important,

time to build specialized systems

MapReduce is a General System

« Can express large computations on large data;
enables fault tolerant, parallel computation

* Fault tolerance is an inefficient fit for many
applications

 Parallel programming model (map, reduce)
within synchronous rounds is an inefficient fit
for many applications

MapReduce for Google’s Index
* Flagship application in original MapReduce paper

* Q: What is inefficient about MapReduce for
computing web indexes?

« “MapReduce and other batch-processing systems
cannot process small updates individually as they rely
on creating large batches for efficiency.”

* Index moved to Percolatorin ~2010 [ospbi “10]
* Incrementally process updates to index
« Uses OCC to apply updates
* 50% reduction in average age of documents

MapReduce for lterative Computations

e lterative computations: compute on the same data as
we update it
* e.g., PageRank
* e.g., Logistic regression

* Q: What is inefficient about MapReduce for these?
* Writing data to disk between all iterations is slow

 Many systems designed for iterative computations,
most notable is Apache Spark
* Key idea 1: Keep data in memory once loaded
» Key idea 2: Provide fault tolerance via lineage:

« Save data to disks occasionally, remember computation that
created later version of data. Use lineage to recompute data
that is lost due to failure.

MapReduce for Stream Processing

» Stream processing: Continuously process an
Infinite stream of incoming events
* e.g., estimating traffic conditions from GPS data
* e.g., identify trending hashtags on twitter
* e.g., detect fraudulent ad-clicks

* Q: What is inefficient about MapReduce for
these?

Stream Processing Systems

 Many stream processing systems as well, typical structure:

* Definite computation ahead of time

« Setup machines to run specific parts of computation and pass data around
(topology)

« Stream data into topology
* Repeat forever
« Trickiest part: fault tolerance!

* Notably systems and their fault tolerance
» Apache/Twitter Storm: Record acknowledgment
» Spark Streaming: Micro-batches
» Google Cloud dataflow: transactional updates
* Apache Flink: Distributed snapshot

» Specialization is much faster, e.g., click-fraud detection at Microsoft

« Batch-processing system: 6 hours
» w/ StreamScope[NSDI ‘16]: 20 minute average

MapReduce for Machine Learning

* Machine learning training often iteratively updates
parameters of a model until it converges

» All workers need to know models of the parameter

« General iterative systems like Spark still slow
because they coalesce and then broadcast
parameter updates to all workers

» Specialize even further for ML!
 Many such systems, e.g., TensorFlow [0SDI ‘16]

* Think ML+Systems is interesting?
« COS 598G offered in the spring

DeepDive on
Distributed Video
Processing at Facebook

