
Big Data 
Processing

COS 418: Distributed Systems
Lecture 19

Wyatt Lloyd



Map Reduce 
Review

2



3

Ex: Word count using partial aggregation

1. Compute word counts from individual files

2. Then merge intermediate output

3. Compute word count on merged outputs



4

Putting it together…

map combine partition reduce



5

Synchronization 
Barrier



6

Fault Tolerance in MapReduce

• Map worker writes intermediate output to local 
disk, separated by partitioning. Once completed, 
tells master node.

• Reduce worker told of location of map task 
outputs, pulls their partition’s data from each 
mapper, execute function across data

• Note:
• “All-to-all” shuffle b/w mappers and reducers
• Written to disk (“materialized”) b/w each

stage



Generality vs 
Specialization

7



8

General Systems

• Can be used for many different applications

• Jack of all trades, master of none

• Pay a generality penalty

• Once a specific application, or class of 

applications becomes sufficiently important, 

time to build specialized systems



9

MapReduce is a General System

• Can express large computations on large data; 
enables fault tolerant, parallel computation

• Fault tolerance is an inefficient fit for many 
applications

• Parallel programming model (map, reduce) 
within synchronous rounds is an inefficient fit 
for many applications



MapReduce for Google’s Index
• Flagship application in original MapReduce paper

• Q: What is inefficient about MapReduce for 
computing web indexes?
• “MapReduce and other batch-processing systems 

cannot process small updates individually as they rely 
on creating large batches for efficiency.”

• Index moved to Percolator in ~2010 [OSDI ‘10]

• Incrementally process updates to index
• Uses OCC to apply updates
• 50% reduction in average age of documents



MapReduce for Iterative Computations

• Iterative computations: compute on the same data as 
we update it
• e.g., PageRank
• e.g., Logistic regression

• Q: What is inefficient about MapReduce for these?
• Writing data to disk between all iterations is slow

• Many systems designed for iterative computations, 
most notable is Apache Spark
• Key idea 1: Keep data in memory once loaded
• Key idea 2: Provide fault tolerance via lineage:

• Save data to disks occasionally, remember computation that 
created later version of data.  Use lineage to recompute data 
that is lost due to failure.



MapReduce for Stream Processing

• Stream processing: Continuously process an 
infinite stream of incoming events
• e.g., estimating traffic conditions from GPS data
• e.g., identify trending hashtags on twitter
• e.g., detect fraudulent ad-clicks

• Q: What is inefficient about MapReduce for 
these?



Stream Processing Systems
• Many stream processing systems as well, typical structure:

• Definite computation ahead of time
• Setup machines to run specific parts of computation and pass data around 

(topology)
• Stream data into topology
• Repeat forever
• Trickiest part: fault tolerance!

• Notably systems and their fault tolerance
• Apache/Twitter Storm: Record acknowledgment 
• Spark Streaming: Micro-batches
• Google Cloud dataflow: transactional updates
• Apache Flink: Distributed snapshot

• Specialization is much faster, e.g., click-fraud detection at Microsoft
• Batch-processing system: 6 hours
• w/ StreamScope[NSDI ‘16]: 20 minute average



MapReduce for Machine Learning

• Machine learning training often iteratively updates 
parameters of a model until it converges
• All workers need to know models of the parameter

• General iterative systems like Spark still slow 
because they coalesce and then broadcast 
parameter updates to all workers

• Specialize even further for ML!
• Many such systems, e.g., TensorFlow [OSDI ‘16]

• Think ML+Systems is interesting?
• COS 598G offered in the spring



DeepDive on 
Distributed Video 
Processing at Facebook

15




