
Scaling Blockchain with Off-chain Approach

COS 418: Distributed Systems
Lecture 18 optional

Zhenyu Song

Outline

• Short introduction to Bitcoin

• Scaling limitation and payment channel

• Payment network

• Smart contract and state channel

2

• Problem with current payment system

– Reversible: bank can reverse your payment
• The whole system is built on the trust of third-party,

e.g., trust the bank not reversing your transaction
• Introduce additional cost

– From a systems perspective, it’s better to build a
non-reversible payment system first

• Can build reversible system on top of it
– Big goal: code is law

3

Why Bitcoin? All about Trust

4

Distributed Payment Layer

Internet

Payment Layer

check_balance(id) send(id0, id1, amount)

• A stateful layer: support state transition with constraints
– For payment layer: the total sum of balance is unchanged

• Replicate payment history on each node

• Nodes run consensus protocol to make the

history identical

5

Design Intuition

Intro to Cryptography Signature

6

Public-Key Cryptography
• Each party has (public key, secret key)

• Alice’s secret key: sk
– Known only by Alice
– Alice uses sk to generate new signatures on messages

• Alice’s public key: pk
– Known by anyone
– Bob uses pk to verify signatures from Alice

7

• Each tx can be viewed as (pksrc, pkdst, amount, sigsrc)
– We use public keys as identifiers
– Signature is to prove the owner made the transaction

• Bitcoin is an append-only log of transactions
– How do we make it append-only?

8

Primitive: Payment Transaction

(pkAlice, pkBob, 1.5, sigAlice)

Timeline

(pkBob, pkCindy, 1, sigBob) (pkAlice, pkCindy, 1, sigAlice)

Intro to Cryptography Hash

9

10

Cryptography Hash Functions
• Take message m of arbitrary length and produces

fixed-size (short) number H(m)

• One-way function
– Efficient: Easy to compute H(m)

– Hiding property: Hard to find an m, given H(m)

– Collisions exist, but hard to find

• For SHA-1, finding any collision requires 280 tries.
Finding a specific collision requires 2160 tries.

• To prevent entities modifying transactions already
committed, each block contains the hash of previous
block

• This gives a sequential order

– Given a block, all blocks before it are fixed

11

Blockchain: Append-only Hash Chain

txn 7

prev: H()

txn 6

prev: H()

txn 5

prev: H()

12

Resolve Forking: Proof of Work

txn 7

prev: H()

txn 6

prev: H()

txn 5

prev: H()

• Generating a new block requires computation
– Cooperative nodes always accept longest chain

• Creating fork requires rate of malicious work >> rate of
correct work

– So, the older the block, the safer it is from being deleted

txn 9

prev: H()

txn 8

prev: H()

txn 6’

prev: H()

Find nonce such that

 hash (nonce || prev_hash || block data) < target

i.e., hash has certain number of leading 0’s

What about changes in total system hashing rate?

• Target is recalculated every 2 weeks

• Goal: one new block every 10 minutes
13

Bitcoin Proof of Work

Outline

• Short introduction to Bitcoin

• Scaling limitation and payment channel

• Payment network

• Smart contract and state channel

14

15

Limitation of Scaling
• Throughput limitation for Bitcoin

– 1 block ~ 10 min
• Can increase the throughput by batching transactions,

i.e., increase block size
• Currently 1 block = 1 MB max, ~ 2000 txns

– 3-4 txns / sec

• Visa payment system: typically 2,000 txns / sec

– Can we scale infinitely by batching more txs?

16

Limitation of Scaling
• Scaling by batching?

– Short answer: not infinitely

– The fundamental limitation on sequential consistency
– Blocks are designed to be in sequential order

• Each block propagates to rest nodes all over the world before another
block is generated

– And also another problem: latency
• If we view the system as a computer, the frequency is bounded by light

speed across the earth

– Conclusion: the throughput and latency in the system are
fundamentally bounded by global network

• Two classes:
– Change blockchain design

• Sharding
• DAG

– Build another layer on top of blockchain: layer 2
• State channel
• Side chain

17

Does People Give up in Scaling?

• The throughput/latency is fundamentally
bounded by sequential consistency

– We pay by ordering all transactions

• But do we need to order all transactions?

– No. If order is not necessary, we don’t need to.

– Therefore we can leverage it to scale

18

Why Layer 2? Throughput/latency!

19

Payment Layer with Layer 2

Internet

Blockchain

check_balance(id) send(id0, id1, amount)

Layer 2

• Layer 2 offloads most of transactions
– Blockchain layer doesn’t see all transactions
– This is why called off-chain

• Intuition: payment transactions are special
– Payment transactions can be merged
– We don’t keep the order, even don’t keep origin txs

• Suppose we are at time t.
– A, B already had several payments
– Does the system need to order the first 3 txs at t?

20

Payment Channel Example

Timeline

A -> B $3 B -> A $2 A -> B $1

t

• No, we can replace the first 3 txs with merged tx (A -> B $2)
– But remember Blockchain is append-only
– How

• Users delay to put transactions on to blockchain
• Users only put merged tx

21

Payment Channel Example

Timeline

A -> B $3 B -> A $2 A -> B $1

t

A -> B $2

• This is an important intuition of layer 2
– Blockchain acts as a court system. Users commit to

blockchain only when their interaction settle down or
there is a disagreement.

• What are the challenges?

22

Payment Channel Example

Timeline

A -> B $3 B -> A $2 A -> B $1

t

A -> B $2

• Support we are at time t-2.
– A paid B $3, and got an apple
– B paid A $2, and got an orange
– If there is no record on-chain, how can B prove to others

that A owes it $1?

23

Payment Channel Example

Timeline

A -> B $3 B -> A $2 A -> B $1

t-2

• We create a new merged transaction after each interaction.
And submit it on-chain when finalizing the result

24

Payment Channel Example

Timeline

A -> B $3 B -> A $2 A -> B $1

On-chain

Off-chain

t-2

Real txs

A -> B $3

• We create a new merged transaction after each interaction.
And submit it on-chain when finalizing the result

25

Payment Channel Example

Timeline

A -> B $3 B -> A $2 A -> B $1

On-chain

Off-chain

t-1

Real txs

A -> B $1

• We create a new merged transaction after each interaction.
And submit it on-chain when finalizing the result

26

Payment Channel Example

Timeline

A -> B $3 B -> A $2 A -> B $1

On-chain

Off-chain

t-1

Real txs

A -> B $2

• We create a new merged transaction after each interaction.
And submit it on-chain when finalizing the result

27

Payment Channel Example

Timeline

A -> B $3 B -> A $2 A -> B $1

On-chain

Off-chain

t-1

Real txs

A -> B $2

• Still we have problems
– What if one malicious party withdraw all its balance to

other account before off-chain transaction commit?

– How do we valid the merged transaction?

– What if malicious party submit old merged tx instead of
new one?

28

Additional Payment Channel Problems

Intro to Multi-signature

29

Multi-signature

• We can sign a message with multiple secret keys
• And we can verify message with multi-signature

using multiple public keys
– Example

• Sign message with skAlice, skBob
• Verify message with pkAlice, pkBob

30

• At start, A and B deposit balance to an account AB
controlled by A and B jointly
– Any txs sending by AB need multi-signature of A and B

• At the same time, A and B sign the init balance with
multi-signature
– Init balance is actually a tx sending deposit money back

from AB

31

Payment Channel Formal Design

31

Timeline

tx1

On-chain

Off-chain

Real txs

Finalize

tx2 tx3

Init Balance

Deposit

Balance Update Final Balance

start

• After each transaction, A and B sign a new balance with
multi-signature
– That is also a transaction sending money from AB back

to A and B according to balance update

32

Payment Channel Formal Design

32

Timeline

tx1

On-chain

Off-chain

Real txs

Finalize

tx2 tx3

Init Balance

Deposit

Balance Update Final Balance

middle

• At the end, A and B sign the final balance with
multi-signature
– That is also a tx sending money back to A and B

• After that, one of then submit this transaction to Blockchain

33

Payment Channel Formal Design

33

Timeline

tx1

On-chain

Off-chain

Real txs

Finalize

tx2 tx3

Init Balance

Deposit

Balance Update Final Balance

end

• What if one malicious party withdraw all its balance to other
account before off-chain transaction commit?
– Initial deposit to a multi-signature controlled account

• How do we valid the merged transaction?
– Multi-signature

• What if malicious party submit old merged tx instead of new
one?
– Merged tx has a nonce (sequence number).
– The nonce is increasing every tx.
– Final tx has highest nonce.
– When merged tx is submitted, there is a disputing period.

In that period, any user can submit a newer merged tx.
34

Solution to Problems

• Why this called payment channel?
– We can view it as a stateful link between two

parties
– The state is the current balance

• This is difficult to implement in Bitcoin, but not
hard in Ethereum
– Ethereum is Turing-complete. You can write

program on it

35

Payment Channel Cont’

Alice Bob

Outline

• Short introduction to Bitcoin

• Scaling limitation and payment channel

• Payment network

• Smart contract and state channel

36

• Payment channel reduces # txs on-chain for
pairs of users

• But to use it, you need to open payment
channel first
– The cost to maintain many channels is high

• Thus why we introduce payment network:
– Reducing complexity from O(n2) to O(n)

37

Why Payment Network?

• There are two kinds of nodes: users and hubs
• Hubs act as routers

– The links between user-hub and hub-hub are
payment channels

– Each payment is done by multiple payment
channel changes

38

Payment Network Intuition

Alice
Bob

Cindy Dave

Hub0
Hub1

• Example: Alice -> Bob $1
– 3 related channel changes

• Challenge:
– There can be malicious hubs / users. How can

we make sure the state changes are atomic?
• Otherwise, hub can take the payment for free

39

Payment Network Intuition

Alice
Bob

Cindy Dave

Hub0
Hub1

Alice --, Hub0 ++
Hub0 --, Hub1 ++

Hub1 --, Bob ++

Intro to Hashed Timelock Contracts (HTLC)

40

• Suppose Alice has payment channel with Bob,
and Bob has payment channel with Cindy

• Alice is going to pay Cindy $100

41

Hashed Timelock Contracts

Alice Bob Cindy

• Alice is going to pay Cindy $100
– Cindy generate a random number m and its hash H(m). Cindy gives H(m)

to Alice
– Alice updates the channel to a conditional payment: she will pay Bob $101

if Bob shows m
– Bob wants $101, so he updates the channel with Cindy to a conditional

payment: he will pay Cindy $100 if Cindy shows m
– Cindy knows m, so she shows m and gets $100. This makes Bob know m
– Bob shows m to Alice, and he gets $101
– All can be done off-chain.

42

Hashed Timelock Contracts

Alice Bob Cindy

• Based on HTLC, we are able to concat multiple
payment channels

• We have payment network that scales. The
bottleneck moves from on-chain to off-chain

• There are still problems, e.g.,
– How to do routing in state links?
– Who pays deposit in hubs?
– Links in the end of slides

43

Payment Network Summary

Outline

• Short introduction to Bitcoin

• Scaling limitation and payment channel

• From payment channel to payment network

• Smart contract and state channel

44

• Bitcoin system is not expressive enough

• It’s hard to implement our previous design

– Multi-signature, nonce, conditional payment and
more complex resolving logic

45

Why Smart Contract?

• Bitcoin is a special state machine (payment system)
– It’s log based
– Each entry is a payment transaction

• Why not design a general state machine?
– Also log based
– Each entry is an instruction

46

Smart Contract Intuition

• There are accounts and contracts
– Account is like Bitcoin account controlled by a

user
• Account has balance
• Account can do payment
• Account can call function of contract

– Contract is state + stateless functions
• Contract has balance
• Contract can do payment
• Contract can call functions of itself/other contracts

47

Short Intro to Ethereum

• With smart contract, we can do complex actions
related with value transfer
– Play chess with conditional payment

• But Ethereum has similar throughput / latency
limitations as Bitcoin
– We can use similar approach to scale it
– We call it state channel

• Instead of agreement on balance, we agree on state
(byte array)

• Resolving logic knows the mapping from state to
balance

– Similarly, we can build networks of state channel
48

Short Intro to State Channel

• State channels only deal with interaction
between two parties
– Can scale to multiple, but not a lot

• Because we need multi-signature
• Information is not able to be shared between

state channels before finalizing
• Need system to monitor on-chain status and

dispute

49

Limitation

• How to build a layer 2 payment network to
scale up irreversible payment system
– Not ordering all txs on-chain
– Reduce the complexity by network

• Here are some useful links:
– https://www.celer.network

• Have a chess game on Blockchain testnet
(Android only)

– https://www.learnchannels.org
– https://offchainlabs.com/

• Princeton
50

Summary

https://www.celer.network/
https://www.learnchannels.org
https://offchainlabs.com/

