
Bitcoin and Blockchain

COS 418: Distributed Systems
Lecture 18

 Zhenyu Song
[Credit: Selected content adapted from Michael Freedman.

Slides refined by Chris Hodsdon and Theano Stavrinos]

• Problem with current payment system

– Reversible: bank can reverse your payment
• Need trust from third party, e.g., trust the bank to not

reverse your transaction
• Introduce additional cost

– From a systems perspective, it’s better to build a
non-reversible payment system first

• Can build reversible system on top of it
– Big goal: code is law

2

Why Bitcoin? All about Trust

• Run a consensus protocol for a consistent view
of payment history
– The protocol guarantees the irreversibility

– Anyone can participate

– As long as a majority of servers are cooperative,
the system is safe

3

Design Intuition

4

Distributed Payment Layer

Internet

Payment Layer

check_balance(id) send(id0, id1, amount)

• A stateful layer: state transition has constraints
– After a payment, the total sum of balance is unchanged

• Instead of directly storing key-value pairs, we store a list of
transactions: (idsrc, iddst, amount)

– This means idsrc sent iddst amount of BTC

– We can construct the balance by iterating along the list

5

Transaction Log

(Alice, Bob, 1.5) (Bob, Cindy, 1) (Alice, Cindy, 1.2) (Alice, Bob, 1.4)

Timeline

• Users need to prove they actually made the transaction

– Bitcoin uses Cryptography Signature

– Alice signs the transaction before she shows the transaction to
others

6

Problem: Proof of Transaction

Intro to Cryptography Signature

7

Public-Key Cryptography
• Each party has (public key, secret key)

• Alice’s secret key: sk
– Known only by Alice
– Alice uses sk to generate new signatures on messages

• Alice’s public key: pk
– Known by anyone
– Bob uses pk to verify signatures from Alice

8

• We use public keys as identifiers

• Each entry becomes (pksrc, pkdst, amount, sigsrc)

• Is this good enough?

9

Combine Signature with Transaction

(pkAlice, pkBob, 1.5, sigAlice)

Timeline

(pkBob, pkCindy, 1, sigBob) (pkAlice, pkCindy, 1, sigAlice)

• Any entity can insert/delete transactions anytime

– Suppose Alice only has 1 BTC, she may be able to spend it several
times

• Alice pays Bob 1 BTC, and receives the product from Bob

• Later this transaction is deleted, so Alice has 1 BTC again

• And Alice still keeps the product

– This is called the double spending problem

• To solve this: use Cryptography Hash to make the transactions
append only

10

Problem: How to Build Consensus

Intro to Cryptography Hash

11

12

Cryptography Hash Functions
• Takes message m of arbitrary length and

produces fixed-size (short) number H(m)

• One-way function
– Efficient: Easy to compute H(m)

– Hiding property: Hard to find an m, given H(m)

– Collisions exist, but hard to find

• For SHA-1, finding any collision requires 280 tries.
Finding a specific collision requires 2160 tries.

• Each block contains the hash of previous block

– Block proposer includes the hash

• This gives a sequential order

– Not real time. Assigned by proposer

• Did we succeed in building consensus?

13

Blockchain: Append-only Hash Chain

txn 7

prev: H()

txn 6

prev: H()

txn 5

prev: H()

14

Problem Remains: Forking

txn 7

prev: H()

txn 6

prev: H()

txn 5

prev: H()

txn 7’

prev: H()

txn 6’

prev: H()

15

Key Idea: Proof of Work

txn 7

prev: H()

txn 6

prev: H()

txn 5

prev: H()

• New design: generating a new block requires computation

• Cooperative nodes always accept longest chain

• Creating fork requires rate of malicious work >> rate of
correct work

– So, the older the block, the safer it is from being deleted

txn 9

prev: H()

txn 8

prev: H()

txn 6’

prev: H()

• Recall hash functions are one-way/collision
resistant

– Hard to find an m, given H(m)

• But what about finding partial collisions?

– m whose hash has most significant bit = 0?

– m whose hash has most significant bit = 00?

– Assuming output is randomly distributed, complexity
grows exponentially with # bits to match

16

Use Hashing to Determine Work!

Find nonce such that

 hash (nonce || prev_hash || block data) < target

i.e., hash has certain number of leading 0’s

What about changes in total system hashing rate?

• Target is recalculated every 2 weeks

• Goal: one new block every 10 minutes
17

Bitcoin Proof of Work

18

Hash Rate Trends of Bitcoin
• To achieve this with normal PCs (less than 40

MH/s), requires 1,000,000,000,000 PCs

• The tech trend: CPU -> GPU -> FPGA -> ASIC

• Creating a new block creates bitcoin!
– Initially 50 BTC, decreases over time, currently 12.5

– New bitcoin assigned to party named in new block

– Called “mining” as you search for gold/coins
19

Why Consume All This Energy?

• Race to find nonce and claim block reward, at
which time race starts again for next block

• Correct behavior is to accept longest chain

– So miners incentivized only to work on longest
chain; otherwise solution is not accepted

– Remember blocks on other forks still “create”
bitcoin, but only matters if chain is in collective
conscious (majority)

20

Incentivizing Correct behavior?

21

Design Detail: Transaction Format

• In real Bitcoin, a transaction is not in the
format of a tuple of (pksrc, pkdst, amount, sigsrc)

• Why? Miner can append the same
transaction multiple times!

• This is similar in “at most once” execution

22

Real Transaction Format

 Hash: h
 Inputs: hx
 Outputs: 1 -> pkBob
 Signature: SigAlice

• Four fields
○ Hash: hash of this transaction
○ Inputs: hashes of one/more previous transactions
○ Outputs: one/more (amount, public key) pairs
○ Signatures: signatures by each input coin owners

• Example: Alice sends Bob 1 BTC. Alice’s 1 BTC is from
the previous transaction x.

23

Real Transaction Format

 Hash: h
 Inputs: hx
 Outputs: 1 -> pkBob, 2 -> pkAlice
 Signature: SigAlice

• Each input must be fully spent

○ Then what if the owner only wants to spend part of
the coin? Make the owner a receiver for rest of the
coin

• Example: Alice uses a 3-BTC tx as input, and sends 1
BTC to Bob, and the rest to herself

24

Real Transaction Format

 Hash: h
 Inputs: hx
 Outputs: 1 -> pkBob, 2 -> pkAlice
 Signature: SigAlice

• The outputs amount is not necessarily equal to inputs
○ Unspent portion of inputs is transaction fee to miner

○ This acts as another incentive

25

Bitcoin & Blockchain Intrinsically Linked

security of
blockchain

value of
currency

health of
mining

ecosystem

• Our current version processes 1 transaction
every 10 min

– Extremely slow!

• How to improve this?

26

Performance Issue

27

Batching Transactions into Blocks

• Miner picks the set of transactions

• Builds block header: prevhash, version, timestamp, txns, etc

• Until it wins OR another node wins

28

Transactions Are Delayed

• After a user submit a tx to miner, it will not be included in the
block computing right now

• So transactions are from 10 - 20 min before block creation

• Can be much longer if many pending transactions

Timeline

Miner find hash for block x,
and finalizes txs in block x+1

User submits a tx

Miner finalizes
txs in block x

Miner find hash
for block x+1

29

Commit Further Delayed
• When do you trust a transaction?

– After we know it is “stable” on the hash chain

– Recall that the longer the chain, the harder to “revert”

• Common practice: transaction “committed” when 6 blocks deep

– i.e., takes another ~1 hour for txn to become committed

30

Storage / Verification Efficiency
• Merkle tree

– Binary tree of hashes
– Root hash “binds” leaves

given collision resistance

• Using a root hash
– Block header now

constant size for hashing
– Can prune tree to reduce

storage needs over time

31

Storage / Verification Efficiency
• Merkle tree

– Binary tree of hashes
– Root hash “binds” leaves

given collision resistance

• Using a root hash
– Block header now

constant size for hashing
– Can prune tree to reduce

storage needs over time
– Can prune when all

txn outputs are spent

• Safety:
– No. Only probabilistic. The deeper block, the

safer
• Liveness:

– Yes. You can always compute a hash in a finite
number of steps

32

Bitcoin Protocol Analysis

33

Limitation of Scaling
• Scaling limitations

– 1 block = 1 MB max, ~ 2000 txns, ~ 10 min
• 3-4 txns / sec

• Visa payment system: typically 2,000 txns / sec

– The fundamental limitation on sequential consistency
• Remember in Lecture 12 we talked about PRAM

– read time + write time ≥ max delay

– Blockchain is designed to read on one node, write on all nodes

– Each block needs to propagate to all nodes around the world

– We cannot make packet travel faster than light

34

Summary
• Payment system

– Coins transfer/split between “addresses” (public keys)

• Blockchain: globally-ordered, append-only log of txns

– Reached through decentralized consensus

– Nodes incentivized to perform work and behave
correctly

• When “solving” a block, get block rewards + txn fees
• Only “keep” reward if block persists on main chain

35

What’s Going on This Area
• Bitcoin happened ~10 years ago

• There is exciting progress in the area in recent years
– Ethereum: Turing-complete Blockchain to support more

complex state transitions
• Run program (smart contract) on blockchain

• ICO, Stable coin (Tether, USDC, GUSD, PAX)

• Can implement financial derivatives like option contract, future contract…

• More main-chains are developing

– Layer 2: scale the blockchain by releasing sequential
consistency:

• State channel and side chain

– See optional slides for more information about state channel

