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• Problem with current payment system

– Reversible: bank can reverse your payment
• Need trust from third party, e.g., trust the bank to not 

reverse your transaction
• Introduce additional cost

– From a systems perspective, it’s better to build a 
non-reversible payment system first

• Can build reversible system on top of it
– Big goal: code is law
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Why Bitcoin? All about Trust



• Run a consensus protocol for a consistent view 
of payment history
– The protocol guarantees the irreversibility

– Anyone can participate

– As long as a majority of servers are cooperative, 
the system is safe
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Design Intuition
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Distributed Payment Layer

Internet

Payment Layer

check_balance(id) send(id0, id1, amount)

• A stateful layer: state transition has constraints
– After a payment, the total sum of balance is unchanged 



• Instead of directly storing key-value pairs, we store a list of 
transactions: (idsrc, iddst, amount)

– This means idsrc sent iddst amount of BTC

– We can construct the balance by iterating along the list
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Transaction Log

(Alice, Bob, 1.5) (Bob, Cindy, 1) (Alice, Cindy, 1.2) (Alice, Bob, 1.4)

Timeline



• Users need to prove they actually made the transaction

– Bitcoin uses Cryptography Signature

– Alice signs the transaction before she shows the transaction to 
others
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Problem: Proof of Transaction



Intro to Cryptography Signature
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Public-Key Cryptography
• Each party has (public key, secret key)

• Alice’s secret key: sk
– Known only by Alice
– Alice uses sk to generate new signatures on messages

• Alice’s public key: pk  
– Known by anyone
– Bob uses pk to verify signatures from Alice
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• We use public keys as identifiers

• Each entry becomes (pksrc, pkdst, amount, sigsrc)

• Is this good enough?
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Combine Signature with Transaction

(pkAlice, pkBob, 1.5, sigAlice)

Timeline

(pkBob, pkCindy, 1, sigBob) (pkAlice, pkCindy, 1, sigAlice)



• Any entity can insert/delete transactions anytime

– Suppose Alice only has 1 BTC, she may be able to spend it several 
times

• Alice pays Bob 1 BTC, and receives the product from Bob

• Later this transaction is deleted, so Alice has 1 BTC again

• And Alice still keeps the product

– This is called the double spending problem

• To solve this: use Cryptography Hash to make the transactions 
append only
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Problem: How to Build Consensus



Intro to Cryptography Hash
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Cryptography Hash Functions
• Takes message m of arbitrary length and 

produces fixed-size (short) number H(m)

• One-way function
– Efficient: Easy to compute H(m)

– Hiding property: Hard to find an m, given H(m)

– Collisions exist, but hard to find

• For SHA-1, finding any collision requires 280 tries.   
Finding a specific collision requires 2160 tries.



• Each block contains the hash of previous block

– Block proposer includes the hash

• This gives a sequential order 

– Not real time. Assigned by proposer

• Did we succeed in building consensus?
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Blockchain: Append-only Hash Chain

txn 7

prev: H(  )

txn 6

prev: H(  )

txn 5

prev: H(  )
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Problem Remains:  Forking

txn 7

prev: H(  )

txn 6

prev: H(  )

txn 5

prev: H(  )

txn 7’

prev: H(  )

txn 6’

prev: H(  )
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Key Idea: Proof of Work

txn 7

prev: H(  )

txn 6

prev: H(  )

txn 5

prev: H(  )

• New design: generating a new block requires computation

• Cooperative nodes always accept longest chain 

• Creating fork requires rate of malicious work >> rate of 
correct work

– So, the older the block, the safer it is from being deleted

txn 9

prev: H(  )

txn 8

prev: H(  )

txn 6’

prev: H(  )



• Recall hash functions are one-way/collision 
resistant

– Hard to find an m, given H(m)

• But what about finding partial collisions?

– m whose hash has most significant bit = 0?

– m whose hash has most significant bit = 00?

– Assuming output is randomly distributed, complexity 
grows exponentially with # bits to match
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Use Hashing to Determine Work!



Find nonce such that

   hash (nonce || prev_hash || block data)  <  target

i.e., hash has certain number of leading 0’s

What about changes in total system hashing rate?

• Target is recalculated every 2 weeks

• Goal: one new block every 10 minutes
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Bitcoin Proof of Work



18

Hash Rate Trends of Bitcoin
• To achieve this with normal PCs (less than 40 

MH/s), requires 1,000,000,000,000 PCs

• The tech trend: CPU -> GPU -> FPGA -> ASIC



• Creating a new block creates bitcoin!
– Initially 50 BTC, decreases over time, currently 12.5

– New bitcoin assigned to party named in new block

– Called “mining” as you search for gold/coins
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Why Consume All This Energy?



• Race to find nonce and claim block reward, at 
which time race starts again for next block

• Correct behavior is to accept longest chain

– So miners incentivized only to work on longest 
chain; otherwise solution is not accepted

– Remember blocks on other forks still “create” 
bitcoin, but only matters if chain is in collective 
conscious (majority)
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Incentivizing Correct behavior?
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Design Detail: Transaction Format

• In real Bitcoin, a transaction is not in the 
format of a tuple of (pksrc, pkdst, amount, sigsrc)

• Why? Miner can append the same 
transaction multiple times!

• This is similar in “at most once” execution
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Real Transaction Format

 Hash:  h
 Inputs: hx
 Outputs:  1 -> pkBob
 Signature: SigAlice

• Four fields
○ Hash: hash of this transaction
○ Inputs: hashes of one/more previous transactions
○ Outputs: one/more (amount, public key) pairs
○ Signatures: signatures by each input coin owners

• Example: Alice sends Bob 1 BTC. Alice’s 1 BTC is from 
the previous transaction x. 
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Real Transaction Format

 Hash:  h
 Inputs: hx
 Outputs:  1 -> pkBob, 2 -> pkAlice
 Signature: SigAlice

• Each input must be fully spent

○ Then what if the owner only wants to spend part of 
the coin? Make the owner a receiver for rest of the 
coin

• Example: Alice uses a 3-BTC tx as input, and sends 1 
BTC to Bob, and the rest to herself  
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Real Transaction Format

 Hash:  h
 Inputs: hx
 Outputs:  1 -> pkBob, 2 -> pkAlice
 Signature: SigAlice

• The outputs amount is not necessarily equal to inputs
○ Unspent portion of inputs is transaction fee to miner

○ This acts as another incentive
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Bitcoin & Blockchain Intrinsically Linked

security of 
blockchain

value of 
currency

health of 
mining 

ecosystem



• Our current version processes 1 transaction 
every 10 min

– Extremely slow!

• How to improve this?
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Performance Issue
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Batching Transactions into Blocks

• Miner picks the set of transactions

• Builds block header: prevhash, version, timestamp, txns, etc

• Until it wins OR another node wins
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Transactions Are Delayed

• After a user submit a tx to miner, it will not be included in the 
block computing right now

• So transactions are from 10 - 20 min before block creation

• Can be much longer if many pending transactions

Timeline

Miner find hash for block x, 
and finalizes txs in block x+1

User submits a tx

Miner finalizes 
txs in block x

Miner find hash 
for block x+1
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Commit Further Delayed
• When do you trust a transaction?

– After we know it is “stable” on the hash chain

– Recall that the longer the chain, the harder to “revert”

• Common practice: transaction “committed” when 6 blocks deep

– i.e., takes another ~1 hour for txn to become committed
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Storage / Verification Efficiency
• Merkle tree

– Binary tree of hashes
– Root hash “binds” leaves 

given collision resistance

• Using a root hash 
– Block header now 

constant size for hashing
– Can prune tree to reduce 

storage needs over time
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Storage / Verification Efficiency
• Merkle tree

– Binary tree of hashes
– Root hash “binds” leaves 

given collision resistance

• Using a root hash 
– Block header now 

constant size for hashing
– Can prune tree to reduce 

storage needs over time
– Can prune when all 

txn outputs are spent



• Safety:
– No. Only probabilistic. The deeper block, the 

safer
• Liveness:

– Yes. You can always compute a hash in a finite 
number of steps
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Bitcoin Protocol Analysis
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Limitation of Scaling
• Scaling limitations

– 1 block = 1 MB max, ~ 2000 txns, ~ 10 min
• 3-4 txns / sec

• Visa payment system: typically 2,000 txns / sec

– The fundamental limitation on sequential consistency
• Remember in Lecture 12 we talked about PRAM

– read time + write time ≥ max delay

– Blockchain is designed to read on one node, write on all nodes

– Each block needs to propagate to all nodes around the world

– We cannot make packet travel faster than light
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Summary
• Payment system

– Coins transfer/split between “addresses” (public keys) 

• Blockchain: globally-ordered, append-only log of txns

– Reached through decentralized consensus

– Nodes incentivized to perform work and behave 
correctly

• When “solving” a block, get block rewards + txn fees
• Only “keep” reward if block persists on main chain
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What’s Going on This Area
• Bitcoin happened ~10 years ago

• There is exciting progress in the area in recent years
– Ethereum: Turing-complete Blockchain to support more 

complex state transitions
• Run program (smart contract) on blockchain

• ICO, Stable coin (Tether, USDC, GUSD, PAX)

• Can implement financial derivatives like option contract, future contract…

• More main-chains are developing

– Layer 2: scale the blockchain by releasing sequential 
consistency:

• State channel and side chain

– See optional slides for more information about state channel


