
Spanner

COS 418: Distributed Systems
Lecture 16

Wyatt Lloyd

Slides adapted from Mike Freedman’s, which are adapted from the Spanner OSDI talk

Why Google Built Spanner
2005 – BigTable [OSDI 2006]

• Eventually consistent across datacenters
• Lesson: “don’t need distributed transactions”

2008? – MegaStore [CIDR 2011]
• Strongly consistent across datacenters
• Option for distributed transactions

• Performance was not great…

2011 – Spanner [OSDI 2012]
• Strictly Serializable Distributed Transactions
• “We wanted to make it easy for developers to build

their applications”

Spanner: Google’s Globally-
Distributed Database

OSDI 2012

3

• Dozens of datacenters (zones)

• Per zone, 100-1000s of servers

• Per server, 100-1000 shards (tablets)

• Every shard replicated for fault-tolerance (e.g., 5x)

4

Google’s Setting

5

Scale-out vs. Fault Tolerance
O

P

QQQ

PP

OO

• Every shard replicated via MultiPaxos
• So every “operation” within transactions across tablets

actually a replicated operation within Paxos RSM
• Paxos groups can stretch across datacenters!

Read-Only Transactions
• Transactions that only read data

• Predeclared, i.e., developer uses READ_ONLY flag /
interface

• Reads are dominant operations
• e.g., FB’s TAO had 500 reads : 1 write [ATC 2013]

• e.g., Google Ads (F1) on Spanner from 1? DC in 24h:
21.5B reads
31.2M single-shard transactions
32.1M multi-shard transactions

Make Read-Only Txns Efficient
• Ideal: Read-only transactions that are non-

blocking
• Arrive at shard, read data, send data back
• Impossible with Strict Serializability

• SNOW after the break!

• Goal 1: Lock-free read-only transactions

• Goal 2: Non-blocking stale read-only txns

Disruptive idea:

Do clocks really need to be
arbitrarily unsynchronized?

Can you engineer some max divergence?

8

• “Global wall-clock time” with bounded uncertainty
• ε is worst-case clock divergence
• Timestamps become intervals, not single values

time

earliest latest

TT.now()

2*ε

9

TrueTime

Consider event enow which invoked tt = TT.now():
Guarantee: tt.earliest <= tabs(enow) <= tt.latest

TrueTime for Read-Only Txns
• Assign all transactions a wall-clock commit time (s)

• All replicas of all shards track how up-to-date they are with
tsafe: all transactions with s < tsafe have committed
on this machine

• Goal 1: Lock-free read-only transactions
• Current time ≤ TT.now.latest()
• sread = TT.now.latest()
• wait until sread < tsafe
• Read data as of sread

• Goal 2: Non-blocking stale read-only txns
• Similar to above, except explicitly choose time in the past
• (Trades away consistency for better perf, e.g., lower latency)

Timestamps and TrueTime

T

Pick s > TT.now().latest

Acquired locks Release locks

Wait until TT.now().earliest > ss

average ε

Commit wait

average ε

11

Commit Wait
• Enables efficient read-only transactions

• Cost: 2ε extra latency

• Reduce/eliminate by overlapping with:
• Replication
• Two-phase commit

Commit Wait and Replication

T

Acquired locks

Start
consensus

Notify
followers

Commit wait donePick s

13

Achieve
consensus

Release locks

Client: 2PL w/ 2PC
1. Issues reads to leader of each shard group,

which acquires read locks and returns most recent
data

2. Locally performs writes
3. Chooses coordinator from set of leaders, initiates

commit
4. Sends commit message to each leader,

include identify of coordinator and buffered writes
5. Waits for commit from coordinator

14

Client-Driven Transactions

• On commit msg from client, leaders acquire local write locks
• If non-coordinator:

• Choose prepare ts > previous local timestamps
• Log prepare record through Paxos
• Notify coordinator of prepare timestamp

• If coordinator:
• Wait until hear from other participants
• Choose commit timestamp >= prepare ts, > local ts
• Logs commit record through Paxos
• Wait commit-wait period
• Sends commit timestamp to replicas, other leaders, client

• All apply at commit timestamp and release locks 15

Commit Wait and 2PC

Commit Wait and 2PC

TC

Acquired locks

TP1

TP2

16

Acquired locks

Acquired locks

Compute sp for each

1. Client issues reads to leader of each shard group,
which acquires read locks and returns most recent data

Commit Wait and 2PC

TC

Acquired locks

TP1

TP2

17

Start logging Done logging

Prepared

Acquired locks

Acquired locks

Compute sp for each
Send sp

2. Locally performs writes
3. Chooses coordinator from set of leaders, initiates commit
4. Sends commit msg to each leader, incl. identity of

coordinator

Commit Wait and 2PC

TC

Acquired locks

TP1

TP2

18

Start logging Done logging

Prepared

Release locks

Acquired locks Release locks

Acquired locks Release locks

Notify participants sc

Commit wait doneCompute sp for each

Compute overall sc

Committed

Send sp

5. Client waits for commit from coordinator

Example

19

TP

Remove X from
friend list

Remove myself from
X’s friend list

sp= 6

sp= 8

sc= 8 s = 15

Risky post P

sc= 8

Time <8

[X]

[me]

15

TC T2

[P]
My friends
My posts
X’s friends

8

[]

[]

Disruptive idea:

Do clocks really need to be
arbitrarily unsynchronized?

Can you engineer some max divergence?

20

TrueTime Architecture

Datacenter 1 Datacenter n…Datacenter 2

GPS
timemaster

GPS
timemaster

GPS
timemaster

Atomic-clock
timemaster

GPS
timemaster

Client

21

GPS
timemaster

Compute reference [earliest, latest] = now ± ε

time

ε

0sec 30sec 60sec 90sec

+6ms

now = reference now + local-clock offset
ε = reference ε + worst-case local-clock drift

= 1ms + 200 μs/sec

22

TrueTime Implementation

• What about faulty clocks?
– Bad CPUs 6x more likely in 1 year of empirical data

Spanner
• Make it easy for developers to build apps!

• Reads dominant, make them lock-free

• TrueTime exposes clock uncertainty
• Commit wait ensures transactions end after their

commit time
• Read at TT.now.latest()

• Globally-distributed database
• 2PL w/ 2PC over Paxos!

