
Scalable Causal
Consistency

COS 418: Distributed Systems
Lecture 14

Wyatt Lloyd

Consistency Hierarchy

Linearizability

Sequential Consistency

Causal+ Consistency

Eventual Consistency

e.g., RAFT

e.g., Bayou

e.g., Dynamo

CAP PRAM 1988
(Princeton)

Consistency Hierarchy

Linearizability

Sequential Consistency

Causal+ Consistency

Eventual Consistency

e.g., RAFT

e.g., Bayou

e.g., Dynamo

CAP PRAM 1988
(Princeton)

Part 1: More on consistency

P2: Scalable Causal
Consistency

Last Time’s Causal+ Consistency

• Partially orders all operations, does not totally order them
• Does not look like a single machine

• Guarantees
• For each process, ∃ an order of all writes + that process’s reads
• Order respects the happens-before (à) ordering of operations
• + replicas converge to the same state

• Skip details, makes it stronger than eventual consistency

Causal Consistency

1. Writes that are potentially
causally related must be
seen by all processes in
same order.

2. Concurrent writes may be
seen in a different order on
different processes.

• Concurrent: Ops not causally
related

Causal Consistency

P1

a
b

d

P2 P3

Physical time ↓

e

f

g

c

1. Writes that are potentially
causally related must be
seen by all processes in
same order.

2. Concurrent writes may be
seen in a different order on
different processes.

• Concurrent: Ops not causally
related

Causal Consistency

P1

a
b

d

P2 P3

e

f

g

c

Operations

a, b

b, f

c, f

e, f

e, g

a, c

a, e

Concurrent?

N

Y

Y

Y

N

Y

N
Physical time ↓

Causal Consistency

P1

a
b

d

P2 P3

e

f

g

c

Operations

a, b

b, f

c, f

e, f

e, g

a, c

a, e

Concurrent?

N

Y

Y

Y

N

Y

N
Physical time ↓

Causal Consistency: Quiz

• Valid under causal consistency

• Why? W(x)b and W(x)c are concurrent
• So all processes don’t (need to) see them in same order

• P3 and P4 read the values ‘a’ and ‘b’ in order as
potentially causally related. No ‘causality’ for ‘b’ and ‘c’.

Sequential Consistency: Quiz

• Invalid under sequential consistency

• Why? P3 and P4 see b and c in different order

• But fine for causal consistency
• B and C are not causually related

Causal Consistency

ü
x

A: Violation: W(x)b happens after W(x)a

B: Correct. P2 doesn’t read value of a before W

Causal consistency
within replicated
systems

12

• Linearizability / sequential: Eager replication
• Trades off low-latency for consistency

13

Implications of laziness on consistency

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

shl

• Causal consistency: Lazy replication
• Trades off consistency for low-latency
• Maintain local ordering when replicating
• Operations may be lost if failure before replication

14

Implications of laziness on consistency

add jmp mov shl
Log

State
Machine

add jmp mov shl
Log

State
Machine

add jmp mov shl
Log

State
Machine

shl

Consistency Hierarchy

Linearizability

Sequential Consistency

Causal+ Consistency

Eventual Consistency

e.g., RAFT

e.g., Bayou

e.g., Dynamo

CAP PRAM 1988
(Princeton)

Part 1: More on consistency

P2: Scalable Causal
Consistency

Consistency vs Scalability

System Consistency Scalable?

Dynamo Eventual Yes

Bayou Causal No

Paxos/RAFT Linearizable No

Scalability: Adding more machines allows more data
to be stored and more operations to be handled!

It’s time to think about
scability!

Consistency vs Scalability

System Consistency Scalable?

Dynamo Eventual Yes

Bayou Causal No

COPS Causal Yes

Paxos/RAFT Linearizable No

Next Time!

Scalability: Adding more machines allows more data
to be stored and more operations to be handled!

Don't Settle for Eventual:
Scalable Causal Consistency
for [Geo-Replicated] Storage
with COPS

W. Lloyd, M. Freedman, M. Kaminsky, D. Andersen
SOSP 2011

18

Geo-Replicated Storage:
Serve User Requests Quickly

Inside the Datacenter

Web Tier Storage Tier

A-F

G-L

M-R

S-Z

Web Tier Storage Tier

A-F

G-L

M-R

S-Z

Remote DC

• Availability
• Low Latency
• Partition Tolerance
• Scalability

Trade-offs

• Consistency (Stronger)
• Partition Tolerance

vs.

A-Z A-ZA-L

M-Z

A-L

M-Z

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

A-C

D-F

G-J

K-L

M-O

P-S

T-V

W-Z

A-C

D-F

G-J

K-L

M-O

P-S

T-V

W-Z

Scalability through Sharding

Causality By Example

Remove boss from
friends group

Post to friends:
“Time for a new job!”

Friend reads post

Causality ()
Same process
Reads-From
(message receipt)

TransitivityNew Job!

23

Friends
Boss

Previous Causal Systems
• Bayou ‘94, TACT ‘00, PRACTI ‘06
– Log-exchange based

• Log is single serialization point
Implicitly captures & enforces causal order
Limits scalability

24

Local Datacenter
Remote DC

13 24

13 24

√
X

Scalability Key Idea
• Capture causality with explicit dependency

metadata

• Enforce with distributed verifications
– Delay exposing replicated writes until all

dependencies are satisfied in the datacenter

25

Local Datacenter Remote DC
1

3

24

1
3

24

13 after

COPS Architecture

A-F

G-L

M-R

S-Z

26

Client

All Ops Local
=

Available and
Low Latency

COPS Architecture

A-F

G-L

M-R

S-Z

27

Client Library

Read

A-F

G-L

M-R

S-Z

28

read

Client Library

Write

A-F

G-L

M-R

S-Z

29

Client Library

write

Replication
write
after

write
+

ordering
metadata

write
after =

Replicated Write

A-F

G-L

M-R

S-Z

30

write_after(…,deps)

dep
check
(L337)

deps
L 337
A 195

dep_check(A195)

Exposing values after dep_checks
return ensures causal

Locator Key

Unique Timestamp

Basic Architecture Summary
• All ops local, replicate in background
– Availability and low latency

• Shard data across many nodes
– Scalability

• Control replication with dependencies
– Causal consistency

31

Challenge: Many Dependencies

• Dependencies grow with client lifetime

Write

Write

Write

Current Write

Read
Read

32

Same
Process

Reads-
From

Transitive
Closure

Nearest Dependencies
• Transitively capture ordering constraints

33

Nearest Dependencies
• Transitively capture ordering constraints

34

• Need extra server-side state to calculate

One-Hop Dependencies
• Small superset of nearest dependencies

35

• Simple to track:
– Last write
– Subsequent reads

Thread-of-
Execution

Reads-
From

Transitive
Closure

• Checking them suffices for causality
– Competitive to eventually-consistent system

• Never store dependencies on the server

• Simplifies client-side dep tracking
– Clear on every write

36

Transitive
Closure

One-Hop Dependencies

Scalable Causal+

A-F

G-L

M-R

S-Z

37

From fully distributed operation

Scalability
• Shard data for scalable storage

• New distributed protocol for scalably
applying writes across shards

• Also need a new distributed protocol for
consistently reading data across
shards…

38

Reads Aren’t Enough

39

A-F

G-L

M-R

S-Z

Boss

I <3 Job

Web Srv

Asynchronous requests + distributed data = ??

Progress

Progress

Progress

Turing’s
Operations

New Job!

BossBoss

I <3 Job

Boss

Boss New Job!

New Job!

1

from 1 4from 4

2

3

Read-Only Transactions
• Consistent up-to-date view of data
– Across many servers

40

Logical Time

Alan…Friends 1 11

Alan…Status 2 19

Boss Boss

New Job!I <3 Job

Alonzo…Friends 1 11
Alan Alan

More on transactions next time!

COPS Scaling Evaluation

 20

 40

 80

 160

 320

LOG
 1 2 4 8 16

COPS
 1 2 4 8 16

COPS-GT

Th
ro

ug
hp

ut
 (K

op
s)

More servers => More operations/sec

COPS
• Scalable causal consistency
– Shard for scalable storage
– Distributed protocols for coordinating writes and

reads
• Evaluation confirms scalability

• All operations handled in local datacenter
– Availability
– Low latency

• We’re thinking scalably now!
– Next time: scalable strong consistency

42

43

