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Last Time’s Causal+ Consistency

• Partially orders all operations, does not totally order them
• Does not look like a single machine

• Guarantees
• For each process, ∃ an order of all writes + that process’s reads
• Order respects the happens-before (à) ordering of operations
• + replicas converge to the same state

• Skip details, makes it stronger than eventual consistency



Causal Consistency

1. Writes that are potentially
causally related must be 
seen by all processes in 
same order. 

2. Concurrent writes may be 
seen in a different order on 
different processes.

• Concurrent: Ops not causally 
related
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Causal Consistency:  Quiz

• Valid under causal consistency

• Why?  W(x)b and W(x)c are concurrent
• So all processes don’t (need to) see them in same order

• P3 and P4 read the values ‘a’ and ‘b’ in order as 
potentially causally related. No ‘causality’ for ‘b’ and ‘c’.



Sequential Consistency:  Quiz

• Invalid under sequential consistency

• Why?  P3 and P4 see b and c in different order

• But fine for causal consistency
• B and C are not causually related



Causal Consistency

ü
x

A: Violation:  W(x)b happens after W(x)a

B: Correct.  P2 doesn’t read value of a before W



Causal consistency 
within replicated 
systems
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• Linearizability / sequential:  Eager replication
• Trades off low-latency for consistency
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• Causal consistency:  Lazy replication
• Trades off consistency for low-latency
• Maintain local ordering when replicating
• Operations may be lost if failure before replication
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Consistency vs Scalability

System Consistency Scalable?

Dynamo Eventual Yes

Bayou Causal No

Paxos/RAFT Linearizable No

Scalability: Adding more machines allows more data 
to be stored and more operations to be handled!

It’s time to think about 
scability!



Consistency vs Scalability

System Consistency Scalable?

Dynamo Eventual Yes

Bayou Causal No

COPS Causal Yes

Paxos/RAFT Linearizable No

Next Time!

Scalability: Adding more machines allows more data 
to be stored and more operations to be handled!



Don't Settle for Eventual:
Scalable Causal Consistency
for [Geo-Replicated] Storage
with COPS

W. Lloyd, M. Freedman, M. Kaminsky, D. Andersen
SOSP 2011
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Geo-Replicated Storage:
Serve User Requests Quickly
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• Availability
• Low Latency
• Partition Tolerance
• Scalability

Trade-offs

• Consistency (Stronger)
• Partition Tolerance

vs.
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Causality By Example 

Remove boss from
friends group

Post to friends:
“Time for a new job!”

Friend reads post

Causality (       )
Same process
Reads-From
(message receipt)

TransitivityNew Job!
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Friends
Boss



Previous Causal Systems
• Bayou ‘94, TACT ‘00, PRACTI ‘06
– Log-exchange based

• Log is single serialization point
Implicitly captures & enforces causal order
Limits scalability
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Scalability Key Idea
• Capture causality with explicit dependency 

metadata

• Enforce with distributed verifications
– Delay exposing replicated writes until all 

dependencies are satisfied in the datacenter
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COPS Architecture
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All Ops Local
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COPS Architecture
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Write
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Client Library
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Replicated Write
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write_after(…,deps)

dep
check
(L337)

deps
L 337
A 195

dep_check(A195)

Exposing values after dep_checks
return ensures causal

Locator Key

Unique Timestamp



Basic Architecture Summary
• All ops local, replicate in background
– Availability and low latency

• Shard data across many nodes
– Scalability

• Control replication with dependencies
– Causal consistency
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Challenge: Many Dependencies

• Dependencies grow with client lifetime

Write

Write

Write

Current Write

Read
Read
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Same 
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Closure



Nearest Dependencies
• Transitively capture ordering constraints
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Nearest Dependencies
• Transitively capture ordering constraints
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• Need extra server-side state to calculate 



One-Hop Dependencies
• Small superset of nearest dependencies
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• Simple to track:
– Last write
– Subsequent reads

Thread-of-
Execution

Reads-
From

Transitive 
Closure



• Checking them suffices for causality
– Competitive to eventually-consistent system

• Never store dependencies on the server

• Simplifies client-side dep tracking
– Clear on every write
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Transitive 
Closure

One-Hop Dependencies



Scalable Causal+

A-F
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M-R

S-Z
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From fully distributed operation



Scalability
• Shard data for scalable storage

• New distributed protocol for scalably
applying writes across shards

• Also need a new distributed protocol for 
consistently reading data across 
shards…
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Reads Aren’t Enough
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Read-Only Transactions
• Consistent up-to-date view of data
– Across many servers
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Logical Time

Alan…Friends 1 11

Alan…Status 2 19

Boss Boss

New Job!I <3 Job

Alonzo…Friends 1 11
Alan Alan

More on transactions next time!



COPS Scaling Evaluation
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More servers => More operations/sec



COPS
• Scalable causal consistency
– Shard for scalable storage
– Distributed protocols for coordinating writes and 

reads
• Evaluation confirms scalability

• All operations handled in local datacenter
– Availability
– Low latency

• We’re thinking scalably now!
– Next time: scalable strong consistency
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