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How Can We Handle Partitions?

« Atomic Multicast?

* Bayou?

 Viewstamped Replication?
* Chord?

» Paxos?

* Dynamo?

« RAFT?



How About This Set of
Partitions?

.



Fundamental Tradeoff?

* Replicas appear to be a

but during a network partltlon
* OR
* All replicas during a network

partition but



CAP Theorem Preview

 You cannot achieve all three of:

1. Consistency
2. Availability
3. Partition-Tolerance

 Partition Tolerance => Partitions Can Happen
* Availability => All Sides of Partition Continue

» Consistency => Replicas Act Like Single Machine
» Specifically,
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Linearizabill Ity [Herlihy and Wing 1990]
* All replicas execute operations in total order

* That total order preserves the
between operations

* If operation A before operation B ,
then A is ordered before B in real-time

* If neither A nor B completes before the other begins,
then there is no real-time order
« (But there must be some total order)



Real-Time Ordering Examples



Linearizability == “Appears to
be a Single Machine”

 Single machine processes requests one by one in
the order it receives them
* Will receive requests ordered by real-time in that order
* Will receive all requests in some order

» Atomic Multicast, Viewstamped Replication,
Paxos, and RAFT provide Linearizability



Linearizability is Ideal?

* Hides the complexity of the underlying
distributed system from applications!
« Easier to write applications
» Easier to write correct applications

» But, performance trade-offs, e.g., CAP



Outline

1. Network Partitions
2. Linearizability

3. CAP Theorem

4. Consistency Hierarchy



CAP Conjecture [Brewer 00]

* From keynote lecture by Eric Brewer (2000)

 History: Eric started Inktomi, early Internet search site
based around “commodity” clusters of computers

» Using CAP to justify “BASE” model: Basically
Available, Soft-state services with Eventual
consistency

* Popular interpretation: 2-out-of-3
» Consistency (Linearizability)
« Availability
 Partition Tolerance: Arbitrary crash/network failures



CAP Theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP
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CAP Theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

- CEREY

Partition Possible (from P)
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CAP Theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

Client 1

Write eventually returns
(from A)

\ Read begins after write completes
T Read eventually returns (from A)

Partition Possible (from P)



CAP Theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

Not consistent (C) => contradiction! Il
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{ Client 1

Write eventually returns
(from A)

\ Read begins after write completes
T Read eventually returns (from A)

Partition Possible (from P)



CAP Interpretation Part 1

» Cannot “choose” no partitions
» 2-out-of-3 interpretation doesn’t make sense
* Instead, availability OR consistency?

* .e., fundamental tradeoff between availability and
consistency

* When designing system must choose one or the other,
both are not possible



CAP Interpretation Part 2

* |t is a theorem, with a proof, that you understand!
« Cannot “beat” CAP Theorem

» Can engineer systems to make partitions
extremely rare, however, and then just take the
rare hit to availability (or consistency)
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Consistency Models

« Contract between a distributed system and the
applications that run on it

* A consistency model is a set of made
by the distributed system

* e.g., Linearizability
« Guarantees a total order of operations
« Guarantees the real-time ordering is respected



Stronger vs Weaker Consistency

» Stronger consistency models
+ Easier to write applications

- More guarantees for the system to ensure
Results in performance tradeoffs

* Weaker consistency models

- Harder to write applications
+ Fewer guarantees for the system to ensure



Strictly Stronger Consistency

* A consistency model A is strictly stronger than B
If it allows a strict subset of the behaviors of B
« Guarantees are strictly stronger

* Linearizability is strictly stronger than Sequential
Consistency
 Linearizability: Jtotal order + real-time ordering

« Sequential: Jtotal order + process ordering
* Process ordering & Real-time ordering



Sequential But Not Linearizable
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Consistency Hierarchy

Linearizability e.g., RAFT

'

Sequential Consistency

1

Causal+ Consistency e.g., Bayou

i

Eventual Consistency e.g., Dynamo



Causal+ Consistency

» Partially orders all operations, does not totally order them
* Does not look like a single machine

« Guarantees
 For each process, 3 an order of all writes + that process’s reads
« Order respects the happens-before (=) ordering of operations

* + replicas converge to the same state
» Skip details, makes it stronger than eventual consistency



Causal+ But Not Sequential

Pa | wix=t)q | riv=0
Ps | wiy=1)d | rx=0 -

Casual+

Happens w(x=1)=— r(y)=0
Before
Order w(y=1) = r(x)=0

P, Order: w(x=1), r(y=0), w(y=1)

Pg Order: w(y=1), r(x=0), w(x=1)

X Sequential

=1 — =O
Process wx=1) r(y)

Ordering wly=1) (%)=0

W(x=1) = r(y)=0
No Total

Order w(y=1) = r(x)=0



Eventual But Not Causal+

Pa Fwix=t)q | win=1
P Frv=1t 4 | riw=0

Eventual X Causal+

As long as Pg
eventually would see
r(x)=1 this is fine

Before
Ordering  r(y)=1 —» r(x)=0

w(x=1) —» w(y)=1
No Order J

for Pg rly)=1 — r(x)=0




Consistency Hierarchy

Linearizability e.g., RAFT
....... *-..-..-..-..-..-..-..-..-. CAP

Sequential Consistency

1

Causal+ Consistency e.g., Bayou

i

Eventual Consistency e.g., Dynamo



Consistency Hierarchy

Linearizability e.g., RAFT

'

Sequential Consistency

------- 1-------------------------- CAP

Causal+ Consistency e.g., Bayou

i

Eventual Consistency e.g., Dynamo



P RAM [Lipton Sandberg 88] [Attiya Welch 94]

 d is the worst-case delay in the network over all
pairs of processes

* Sequentially consistent system
 read time + write time = d

 Fundamental tradeoff between consistency and
latency!
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