CAP Theorem and
Consistency Models

1 VET | NOV h
TES | TAM
Al EN | TVM |}

COS 418: Distributed Systems
Lecture 12

Wyatt Lloyd

Outline

1. Network Partitions
2. Linearizability

3. CAP Theorem

4. Consistency Hierarchy

Network Partitions Divide
Systems

H—N

\ \
X m‘/

Network Partitions Divide
Systems

\ = | =@
e/

¢

How Can We Handle Partitions?

« Atomic Multicast?

* Bayou?

 Viewstamped Replication?
* Chord?

» Paxos?

* Dynamo?

« RAFT?

How About This Set of
Partitions?

.

Fundamental Tradeoff?

* Replicas appear to be a

but during a network partltlon
* OR
* All replicas during a network

partition but

CAP Theorem Preview

 You cannot achieve all three of:

1. Consistency
2. Availability
3. Partition-Tolerance

 Partition Tolerance => Partitions Can Happen
* Availability => All Sides of Partition Continue

» Consistency => Replicas Act Like Single Machine
» Specifically,

Outline

1. Network Partitions
2. Linearizability

3. CAP Theorem

4. Consistency Hierarchy

Linearizabill Ity [Herlihy and Wing 1990]
* All replicas execute operations in total order

* That total order preserves the
between operations

* If operation A before operation B ,
then A is ordered before B in real-time

* If neither A nor B completes before the other begins,
then there is no real-time order
« (But there must be some total order)

Real-Time Ordering Examples

Linearizability == “Appears to
be a Single Machine”

 Single machine processes requests one by one in
the order it receives them
* Will receive requests ordered by real-time in that order
* Will receive all requests in some order

» Atomic Multicast, Viewstamped Replication,
Paxos, and RAFT provide Linearizability

Linearizability is Ideal?

* Hides the complexity of the underlying
distributed system from applications!
« Easier to write applications
» Easier to write correct applications

» But, performance trade-offs, e.g., CAP

Outline

1. Network Partitions
2. Linearizability

3. CAP Theorem

4. Consistency Hierarchy

CAP Conjecture [Brewer 00]

* From keynote lecture by Eric Brewer (2000)

 History: Eric started Inktomi, early Internet search site
based around “commodity” clusters of computers

» Using CAP to justify “BASE” model: Basically
Available, Soft-state services with Eventual
consistency

* Popular interpretation: 2-out-of-3
» Consistency (Linearizability)
« Availability
 Partition Tolerance: Arbitrary crash/network failures

CAP Theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

- SRR

CAP Theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

- CEREY

Partition Possible (from P)

CAP Theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

=8 | @ [=

{ Client 1

Write eventually returns
(from A)

Partition Possible (from P)

CAP Theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

Client 1

Write eventually returns
(from A)

\ Read begins after write completes
T Read eventually returns (from A)

Partition Possible (from P)

CAP Theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

Not consistent (C) => contradiction! Il

wix=1) - : — r(x
<_ol-<____’q3 ; Eqﬁ(@)o Client 1 J

{ Client 1

Write eventually returns
(from A)

\ Read begins after write completes
T Read eventually returns (from A)

Partition Possible (from P)

CAP Interpretation Part 1

» Cannot “choose” no partitions
» 2-out-of-3 interpretation doesn’t make sense
* Instead, availability OR consistency?

* .e., fundamental tradeoff between availability and
consistency

* When designing system must choose one or the other,
both are not possible

CAP Interpretation Part 2

* |t is a theorem, with a proof, that you understand!
« Cannot “beat” CAP Theorem

» Can engineer systems to make partitions
extremely rare, however, and then just take the
rare hit to availability (or consistency)

Outline

1. Network Partitions
2. Linearizability

3. CAP Theorem

4. Consistency Hierarchy

Consistency Models

« Contract between a distributed system and the
applications that run on it

* A consistency model is a set of made
by the distributed system

* e.g., Linearizability
« Guarantees a total order of operations
« Guarantees the real-time ordering is respected

Stronger vs Weaker Consistency

» Stronger consistency models
+ Easier to write applications

- More guarantees for the system to ensure
Results in performance tradeoffs

* Weaker consistency models

- Harder to write applications
+ Fewer guarantees for the system to ensure

Strictly Stronger Consistency

* A consistency model A is strictly stronger than B
If it allows a strict subset of the behaviors of B
« Guarantees are strictly stronger

* Linearizability is strictly stronger than Sequential
Consistency
 Linearizability: Jtotal order + real-time ordering

« Sequential: Jtotal order + process ordering
* Process ordering & Real-time ordering

Sequential But Not Linearizable

A I—W(alicePwd:Ox5f4)—|

r(alicePwd)=0x81d

|
1 One week later

Consistency Hierarchy

Linearizability e.g., RAFT

'

Sequential Consistency

1

Causal+ Consistency e.g., Bayou

i

Eventual Consistency e.g., Dynamo

Causal+ Consistency

» Partially orders all operations, does not totally order them
* Does not look like a single machine

« Guarantees
 For each process, 3 an order of all writes + that process’s reads
« Order respects the happens-before (=) ordering of operations

* + replicas converge to the same state
» Skip details, makes it stronger than eventual consistency

Causal+ But Not Sequential

Pa | wix=t)q | riv=0
Ps | wiy=1)d | rx=0 -

Casual+

Happens w(x=1)=— r(y)=0
Before
Order w(y=1) = r(x)=0

P, Order: w(x=1), r(y=0), w(y=1)

Pg Order: w(y=1), r(x=0), w(x=1)

X Sequential

=1 — =O
Process wx=1) r(y)

Ordering wly=1) (%)=0

W(x=1) = r(y)=0
No Total

Order w(y=1) = r(x)=0

Eventual But Not Causal+

Pa Fwix=t)q | win=1
P Frv=1t 4 | riw=0

Eventual X Causal+

As long as Pg
eventually would see
r(x)=1 this is fine

Before
Ordering r(y)=1 —» r(x)=0

w(x=1) —» w(y)=1
No Order J

for Pg rly)=1 — r(x)=0

Consistency Hierarchy

Linearizability e.g., RAFT
....... *-..-..-..-..-..-..-..-..-. CAP

Sequential Consistency

1

Causal+ Consistency e.g., Bayou

i

Eventual Consistency e.g., Dynamo

Consistency Hierarchy

Linearizability e.g., RAFT

'

Sequential Consistency

------- 1-------------------------- CAP

Causal+ Consistency e.g., Bayou

i

Eventual Consistency e.g., Dynamo

P RAM [Lipton Sandberg 88] [Attiya Welch 94]

 d is the worst-case delay in the network over all
pairs of processes

* Sequentially consistent system
 read time + write time = d

 Fundamental tradeoff between consistency and
latency!

Outline

1. Network Partitions
2. Linearizability

3. CAP Theorem

4. Consistency Hierarchy

