CAP Theorem and Consistency Models

COS 418: Distributed Systems

Lecture 12

Wyatt Lloyd

Outline

- 1. Network Partitions
- 2. Linearizability
- 3. CAP Theorem
- 4. Consistency Hierarchy

Network Partitions Divide Systems

Network Partitions Divide Systems

How Can We Handle Partitions?

- Atomic Multicast?
- Bayou?
- Viewstamped Replication?
- Chord?
- Paxos?
- Dynamo?
- RAFT?

How About This Set of Partitions?

Fundamental Tradeoff?

- Replicas appear to be a single machine, but lose availability during a network partition
- OR
- All replicas remain available during a network partition but do not appear to be a single machine

CAP Theorem Preview

- You cannot achieve all three of:
 - 1. Consistency
 - 2. Availability
 - 3. Partition-Tolerance
- Partition Tolerance => Partitions Can Happen
- Availability => All Sides of Partition Continue
- Consistency => Replicas Act Like Single Machine
 - Specifically, Linearizability

Outline

- 1. Network Partitions
- 2. Linearizability
- 3. CAP Theorem
- 4. Consistency Hierarchy

Linearizability [Herlihy and Wing 1990]

- All replicas execute operations in some total order
- That total order preserves the real-time ordering between operations
 - If operation A completes before operation B begins, then A is ordered before B in real-time
 - If neither A nor B completes before the other begins, then there is no real-time order
 - (But there must be *some* total order)

Real-Time Ordering Examples

Linearizability == "Appears to be a Single Machine"

- Single machine processes requests one by one in the order it receives them
 - Will receive requests ordered by real-time in that order
 - Will receive all requests in some order
- Atomic Multicast, Viewstamped Replication, Paxos, and RAFT provide Linearizability

Linearizability is Ideal?

- Hides the complexity of the underlying distributed system from applications!
 - Easier to write applications
 - Easier to write correct applications
- But, performance trade-offs, e.g., CAP

Outline

- 1. Network Partitions
- 2. Linearizability
- 3. CAP Theorem
- 4. Consistency Hierarchy

CAP Conjecture [Brewer 00]

- From keynote lecture by Eric Brewer (2000)
 - History: Eric started Inktomi, early Internet search site based around "commodity" clusters of computers
 - Using CAP to justify "BASE" model: Basically Available, Soft-state services with Eventual consistency
- Popular interpretation: 2-out-of-3
 - Consistency (Linearizability)
 - Availability
 - Partition Tolerance: Arbitrary crash/network failures

Assume to contradict that Algorithm A provides all of CAP

Assume to contradict that Algorithm A provides all of CAP

Assume to contradict that Algorithm A provides all of CAP

Assume to contradict that Algorithm A provides all of CAP

Read begins after write completes Read eventually returns (from A)

Client 1

Partition Possible (from P)

CAP Interpretation Part 1

- Cannot "choose" no partitions
 - 2-out-of-3 interpretation doesn't make sense
 - Instead, availability OR consistency?
- i.e., fundamental tradeoff between availability and consistency
 - When designing system must choose one or the other, both are not possible

CAP Interpretation Part 2

- It is a theorem, with a proof, that you understand!
- Cannot "beat" CAP Theorem
- Can engineer systems to make partitions extremely rare, however, and then just take the rare hit to availability (or consistency)

Outline

- 1. Network Partitions
- 2. Linearizability
- 3. CAP Theorem
- 4. Consistency Hierarchy

Consistency Models

- Contract between a distributed system and the applications that run on it
- A consistency model is a set of guarantees made by the distributed system
- e.g., Linearizability
 - Guarantees a total order of operations
 - Guarantees the real-time ordering is respected

Stronger vs Weaker Consistency

- Stronger consistency models
 - + Easier to write applications
 - More guarantees for the system to ensure Results in performance tradeoffs
- Weaker consistency models
 - Harder to write applications
 - + Fewer guarantees for the system to ensure

Strictly Stronger Consistency

- A consistency model A is strictly stronger than B if it allows a strict subset of the behaviors of B
 - Guarantees are strictly stronger
- Linearizability is strictly stronger than Sequential Consistency
 - Linearizability: \exists total order + real-time ordering
 - Sequential: ∃ total order + process ordering
 - Process ordering \subseteq Real-time ordering

Sequential But Not Linearizable

Consistency Hierarchy

e.g., Dynamo

Causal+ Consistency

- Partially orders all operations, does not totally order them
 - Does not look like a single machine
- Guarantees
 - For each process, \exists an order of all writes + that process's reads
 - Order respects the happens-before (\rightarrow) ordering of operations
 - + replicas converge to the same state
 - Skip details, makes it stronger than eventual consistency

Causal+ But Not Sequential

$$P_{A} \models w(x=1) \dashv \models r(y)=0 \dashv$$
$$P_{B} \models w(y=1) \dashv \models r(x)=0 \dashv$$

✓ Casual+

Happens $w(x=1) \longrightarrow r(y)=0$ BeforeOrder $w(y=1) \longrightarrow r(x)=0$

P_A Order: w(x=1), r(y=0), w(y=1)

P_B Order: w(y=1), r(x=0), w(x=1)

X Sequential

Process Ordering $w(x=1) \longrightarrow r(y)=0$ $w(y=1) \longrightarrow r(x)=0$

Eventual But Not Causal+

$$P_A \models w(x=1) \dashv \models w(y)=1 \dashv$$

 P_B

Eventual

As long as P_B eventually would see r(x)=1 this is fine

$$\begin{array}{c} \downarrow r(y)=1 & \downarrow r(x)=0 & \downarrow \\ \textbf{X Causal+} \\ \text{Happens Before Ordering } & w(x=1) & w(y)=1 \\ \downarrow f(y)=1 & f(x)=0 \end{array}$$

Consistency Hierarchy

Linearizability e.g., RAFT CAP Sequential Consistency e.g., Bayou Causal+ Consistency

Eventual Consistency e.g., Dynamo

Consistency Hierarchy

PRAM [Lipton Sandberg 88] [Attiya Welch 94]

- *d* is the worst-case delay in the network over all pairs of processes
- Sequentially consistent system
- read time + write time $\geq d$
- Fundamental tradeoff between consistency and latency!

Outline

- 1. Network Partitions
- 2. Linearizability
- 3. CAP Theorem
- 4. Consistency Hierarchy