
CAP Theorem and
Consistency Models

COS 418: Distributed Systems
Lecture 12

Wyatt Lloyd

Outline
1. Network Partitions

2. Linearizability

3. CAP Theorem

4. Consistency Hierarchy

Network Partitions Divide
Systems

Network Partitions Divide
Systems

How Can We Handle Partitions?
• Atomic Multicast?
• Bayou?
• Viewstamped Replication?
• Chord?
• Paxos?
• Dynamo?
• RAFT?

How About This Set of
Partitions?

Fundamental Tradeoff?
• Replicas appear to be a single machine,

but lose availability during a network partition

• OR

• All replicas remain available during a network
partition but do not appear to be a single machine

CAP Theorem Preview
• You cannot achieve all three of:

1. Consistency
2. Availability
3. Partition-Tolerance

• Partition Tolerance => Partitions Can Happen
• Availability => All Sides of Partition Continue
• Consistency => Replicas Act Like Single Machine
• Specifically, Linearizability

Outline
1. Network Partitions

2. Linearizability

3. CAP Theorem

4. Consistency Hierarchy

Linearizability [Herlihy and Wing 1990]

• All replicas execute operations in some total order

• That total order preserves the real-time ordering
between operations
• If operation A completes before operation B begins,

then A is ordered before B in real-time
• If neither A nor B completes before the other begins,

then there is no real-time order
• (But there must be some total order)

Real-Time Ordering Examples

Linearizability == “Appears to
be a Single Machine”
• Single machine processes requests one by one in

the order it receives them
• Will receive requests ordered by real-time in that order
• Will receive all requests in some order

• Atomic Multicast, Viewstamped Replication,
Paxos, and RAFT provide Linearizability

Linearizability is Ideal?
• Hides the complexity of the underlying

distributed system from applications!
• Easier to write applications
• Easier to write correct applications

• But, performance trade-offs, e.g., CAP

Outline
1. Network Partitions

2. Linearizability

3. CAP Theorem

4. Consistency Hierarchy

CAP Conjecture [Brewer 00]

• From keynote lecture by Eric Brewer (2000)
• History: Eric started Inktomi, early Internet search site

based around “commodity” clusters of computers
• Using CAP to justify “BASE” model: Basically

Available, Soft-state services with Eventual
consistency

• Popular interpretation: 2-out-of-3
• Consistency (Linearizability)
• Availability
• Partition Tolerance: Arbitrary crash/network failures

CAP Theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

Client 1 Client 1

CAP Theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

Partition Possible (from P)

Client 1 Client 1

CAP Theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

Partition Possible (from P)

Write eventually returns
(from A)

Client 1
w(x=1)

ok
Client 1

CAP Theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

Partition Possible (from P)

Write eventually returns
(from A)

Client 1
w(x=1)

ok
Client 1

r(x)

x=0

Read begins after write completes
Read eventually returns (from A)

CAP Theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

Partition Possible (from P)

Write eventually returns
(from A)

Client 1
w(x=1)

ok
Client 1

r(x)

x=0

Read begins after write completes
Read eventually returns (from A)

Not consistent (C) => contradiction!

CAP Interpretation Part 1
• Cannot “choose” no partitions
• 2-out-of-3 interpretation doesn’t make sense
• Instead, availability OR consistency?

• i.e., fundamental tradeoff between availability and
consistency
• When designing system must choose one or the other,

both are not possible

CAP Interpretation Part 2
• It is a theorem, with a proof, that you understand!

• Cannot “beat” CAP Theorem

• Can engineer systems to make partitions
extremely rare, however, and then just take the
rare hit to availability (or consistency)

Outline
1. Network Partitions

2. Linearizability

3. CAP Theorem

4. Consistency Hierarchy

Consistency Models
• Contract between a distributed system and the

applications that run on it

• A consistency model is a set of guarantees made
by the distributed system

• e.g., Linearizability
• Guarantees a total order of operations
• Guarantees the real-time ordering is respected

Stronger vs Weaker Consistency
• Stronger consistency models

+ Easier to write applications
- More guarantees for the system to ensure

Results in performance tradeoffs

• Weaker consistency models
- Harder to write applications
+ Fewer guarantees for the system to ensure

Strictly Stronger Consistency
• A consistency model A is strictly stronger than B

if it allows a strict subset of the behaviors of B
• Guarantees are strictly stronger

• Linearizability is strictly stronger than Sequential
Consistency
• Linearizability: �total order + real-time ordering
• Sequential: �total order + process ordering

• Process ordering � Real-time ordering

Sequential But Not Linearizable

round of communication [17] where at least one processor
can fail by crashing. In addition, no protocol can guarantee
that all writes will be fast in this setting [19]. Beyond read
and write performance, shared registers are fundamentally
weaker than consensus protocols in that strong synchroniza-
tion primitives, such as read-modify-write, cannot be imple-
mented solely by composing registers [24].
Unifying consensus and shared registers TUPAQ aims to
reconcile these tradeoffs in order to provide strongly con-
sistent read, write, and rmw operations. TUPAQ avoids the
costly overheads of consensus protocols for read and write
operations by using a simpler shared register protocol for
these operations. To further reign in latency in the geo-
replicated setting, we next discuss the consistency model that
TUPAQ provides in order to circumvent the aforementioned
fast read impossibility result.

3 Consistency
Strong consistency simplifies the development of multi-
process and distributed applications by constraining the be-
havior of the applications to the behavior allowed by a se-
quential system. Programmers can more naturally reason
about sequential systems, so complex logic can be imple-
mented without reasoning about the exponentially many in-
terleavings of concurrent operations.

3.1 Sequential consistency ignores real-time
This is the intuition behind Lamport’s sequential consistency
as a correctness condition for parallel programs [30].

Definition 3.1 (Sequential Consistency). The result of any
execution is the same as if the operations of all the proces-
sors were executed in some sequential order, and the opera-
tions of each individual processor appear in this sequence in
the order specified by its program.

We say that a consistency model is a strong consistency
model if it is as least as strong as sequential consistency. We
are not the first to define strong consistency as such [53].

Sequential consistency, however, is not sufficiently strong
for applications that require timeliness guarantees in order to
be perceived as correct by the application users. We consider,
as an example of this insufficiency, a user account system
for an online shopping service, Shopazon. Shopazon stores
users’ credit card information, but requires users to enter
their passwords on checkout. Suppose Shopazon discovers a
dump of passwords on the Internet from a hacking of an un-
related company. Shopazon notifies their users of this public
database and advises them to change their passwords.

Alice, a Shopazon customer, receives one of these emails
and changes her password. The user account system receives
her password change request, writes a hash of the new pass-
word to the user account storage system, and notifies Alice
that her password change request successfully completed.

A

B

w(alicePwd=0x5f4)

r(alicePwd)=0x81d

One week later

Figure 1: This execution is allowed by sequential con-
sistency, but not by regularity, regular sequential consis-
tency, and linearizability.

One week later, Bob, an online thief, discovers the pass-
word database that contains Alice’s old password and at-
tempts to use it to make a large Shopazon purchase. The
user account system hashes the plain text that Bob enters and
sends a read request for the hash of Alice’s account password
to the storage system in order to validate the password.

A timeline of all of these events is depicted in Figure 1.
If the user account storage system only provides sequential
consistency, then it is possible for Bob’s read request to re-
turn the old hash, despite the system notifying Alice a week
earlier that her password was successfully changed.

In this example, the user account system is correct in
the sense that every execution is equivalent to an execution
that could have happened in a completely sequential system
(Bob’s read ordered before Alice’s write). However, the lack
of any real-time guarantees in sequential consistency allows
counterintuitive behavior from the users’ perspective.

3.2 Linearizability is slow

Linearizability [25] is a strong consistency model, strictly
stronger than sequential consistency, that imposes additional
constraints on the allowable ordering of operations in or-
der to ensure that the effects of operations are observed in
a timely manner by all clients.

Definition 3.2 (Linearizability). The result of any execution
is the same as if the operations of all the processors were
executed in some sequential order, and if an operation op1
completes before an operation op2 is invoked, then op1 and
op2 appear in this sequence in the same order.

If the user account storage system provides linearizability,
then Bob’s read of the password for Alice’s account in Fig-
ure 1 would not return the old hash as shown, but instead
return the new value written by Alice’s preceding write.

While linearizability better aligns with users’ perceived
notion of correctness, as discussed in Section 2, even the
weakest of linearizable objects (shared registers) require
multiple round trips of communication between processes
in the system [17, 19]. This extra latency, even in the worst
case, is an expensive tradeoff in latency-sensitive applica-
tions, such as online shopping services.

3

Consistency Hierarchy

Linearizability

Sequential Consistency

Causal+ Consistency

Eventual Consistency

e.g., RAFT

e.g., Bayou

e.g., Dynamo

Causal+ Consistency
• Partially orders all operations, does not totally order them

• Does not look like a single machine

• Guarantees
• For each process, � an order of all writes + that process’s reads
• Order respects the happens-before (à) ordering of operations
• + replicas converge to the same state

• Skip details, makes it stronger than eventual consistency

Causal+ But Not Sequential
w(x=1)

w(y=1) r(x)=0

r(y)=0PA

PB

w(x=1)

w(y=1)

r(y)=0

r(x)=0

PA Order: w(x=1), r(y=0), w(y=1)

Happens
Before
Order

Process
Ordering

w(x=1)

w(y=1)

r(y)=0

r(x)=0

No Total
Order

w(x=1)

w(y=1)

r(y)=0

r(x)=0

√ Casual+ X Sequential

PB Order: w(y=1), r(x=0), w(x=1)

Eventual But Not Causal+
w(x=1)

r(y)=1 r(x)=0

w(y)=1PA

PB

As long as PB
eventually would see
r(x)=1 this is fine

Happens
Before
Ordering

w(x=1)

r(y)=1

w(y)=1

r(x)=0

No Order
for PB

w(x=1)

r(y)=1

w(y)=1

r(x)=0

√ Eventual X Causal+

Consistency Hierarchy

Linearizability

Sequential Consistency

Causal+ Consistency

Eventual Consistency

e.g., RAFT

e.g., Bayou

e.g., Dynamo

CAP

Consistency Hierarchy

Linearizability

Sequential Consistency

Causal+ Consistency

Eventual Consistency

e.g., RAFT

e.g., Bayou

e.g., Dynamo

CAP PRAM 1988
(Princeton)

PRAM [Lipton Sandberg 88] [Attiya Welch 94]

• d is the worst-case delay in the network over all
pairs of processes

• Sequentially consistent system

• read time + write time ≥ d

• Fundamental tradeoff between consistency and
latency!

Outline
1. Network Partitions

2. Linearizability

3. CAP Theorem

4. Consistency Hierarchy

