
Consensus,
FLP, and Paxos

COS 418: Distributed Systems
Lecture 10

Wyatt Lloyd

• Let different replicas assume role of primary over
time
• System moves through a sequence of views
• How do the nodes agree on view / primary?

2

Recall the use of Views

P

P
P

View #1

View #2

View #3

Consensus

• Definition:

1. A general agreement about something
2. An idea or opinion that is shared by all the

people in a group

Consensus

Given a set of processors, each with an initial value:

• Termination: All non-faulty processes eventually decide
on a value

• Agreement: All processes that decide do so on the
same value

• Validity: The value that has been decided must have
proposed by some process

Group of servers attempting:

• Make sure all servers in group receive the same
updates in the same order as each other

• Maintain own lists (views) on who is a current
member of the group, and update lists when
somebody leaves/fails

• Elect a leader in group, and inform everybody

• Ensure mutually exclusive (one process at a time
only) access to a critical resource like a file

5

Consensus Used in Systems

Can We Achieve
Consensus?

• Network model:
• Synchronous (time-bounded delay) or asynchronous

(arbitrary delay)
• Reliable or unreliable communication

• Node failures:
• Crash (correct/dead) or Byzantine (arbitrary)

• (Left options indicate an “easier” setting.)

7

Defining Our System Model

• Network model:
• Synchronous (time-bounded delay) or asynchronous

(arbitrary delay)
• Reliable or unreliable communication

• Node failures:
• Crash (correct/dead) or Byzantine (arbitrary)

• (Left options indicate an “easier” setting.)

8

Defining Our System Model

Consensus is
Impossible

• No deterministic
1-crash-robust
consensus
algorithm exists
with asynchronous
communication

10

“FLP” Result

11

FLP’s Weak Assumptions

• Only 1 failure
à Also impossible for more failures

• For “weak” consensus (only some process needs to decide, not all)
à Also impossible for real consensus

• For reliable communication
à Also impossible for unreliable communication

• For only two states: 0 and 1
à Also impossible for more failures

• For crash failures
à Also impossible for Byzantine failures

FLP’s Strong Assumptions

• Deterministic actions at each node

• Asynchronous network communication

• All “runs” must eventually achieve consensus

• Initial state of system can end in decision “0” or “1”
• Consider 5 processes, each in some initial state

[1,1,1,1,1] → 1
[1,1,1,1,0] → ?
[1,1,1,0,0] → ?
[1,1,0,0,0] → ?
[1,0,0,0,0] → 0

13

Main Technical Approach

Must exist two
configurations
here which differ
in decision

• Initial state of system can end in decision “0” or “1”
• Consider 5 processes, each in some initial state

[1,1,1,1,1] → 1
[1,1,1,1,0] → 1
[1,1,1,0,0] → 1
[1,1,0,0,0] → 0
[1,0,0,0,0] → 0

14

Main Technical Approach

Assume decision differs
between these two processes

• Goal: Consensus holds in face of 1 failure

[1,1,0,0,0] →
[1,1,1,0,0] →

15

Main Technical Approach

One of these configurations must be “bi-valent”
Both futures possible

1 | 0
0

• Goal: Consensus holds in face of 1 failure

[1,1,0,0,0] →
[1,1,1,0,0] →

• Inherent non-determinism from asynchronous network
• Key result: All bi-valent states can remain in bi-valent

states after performing some work
16

Main Technical Approach

One of these configurations must be “bi-valent”
Both futures possible

1 | 0
0

Staying Bi-Valent Forever

1. System thinks process p failed, adapts to it…

2. But no, p was merely slow, not failed…
(Can’t tell the difference between slow and failed.)

3. System think process q failed, adapts to it…

4. But no, q was merely slow, not failed…

5. Repeat ad infinitum …

Consensus is
Impossible
But, we achieve consensus all the time…

FLP’s Strong Assumptions

• Deterministic actions at each node
• Randomized algorithms can achieve consensus

• Asynchronous network communication
• Synchronous or even partial synchrony is sufficient

• All “runs” must eventually achieve consensus
• In practice, many “runs” achieve consensus quickly
• In practice, “runs” that never achieve consensus

happen vanishingly rarely
• Both are true with good system designs

Consensus is
Possible
With Paxos!

Consensus

Given a set of processors, each with an initial value:

• Termination: All non-faulty processes eventually decide
on a value ß Good thing that eventually should happen

• Agreement: All processes that decide do so on the
same value ß Bad thing that should never happen

• Validity: The value that has been decided must have
proposed by some process ß Bad thing that should
never happen

Safety vs. Liveness Properties

• Safety (bad things never happen)

• Liveness (good things eventually happen)

Paxos

• Safety
– Only a single value is chosen
– Only chosen values are learned by processes
– Only a proposed value can be chosen

• Liveness

– Some proposed value eventually chosen if fewer than half
of processes fail

– If value is chosen, a process eventually learns it

agreement

validity

termination

Paxos’s Safety and Liveness

• Paxos is always safe

• Paxos is very often live
• But not always live

Roles of a Process

• Three conceptual roles
• Proposers propose values
• Acceptors accept values, where a value is chosen if a

majority accept
• Learners learn the outcome (chosen value)

• In reality, a process can play any/all roles

25

Strawmen

• 3 proposers, 1 acceptor
• Acceptor accepts first value received
• No liveness with single failure

• 3 proposers, 3 acceptors
• Accept first value received, acceptors choose

common value known by majority
• But no such majority is guaranteed

26

Paxos
• Each acceptor accepts multiple proposals
• Hopefully one of multiple accepted proposals will have

a majority vote (and we determine that)
• If not, rinse and repeat (more on this)

• How do we select among multiple proposals?
• Ordering: proposal is tuple (proposal #, value) = (n, v)
• Proposal # strictly increasing, globally unique
• Globally unique?

• Trick: set low-order bits to proposer’s ID

27

Paxos Protocol Overview
• Proposers:

1. Choose a proposal number n
2. Ask acceptors if any accepted proposals with na < n
3. If existing proposal va returned,

propose same value (n, va)
4. Otherwise, propose own value (n, v)
Note altruism: goal is to reach consensus, not “win”

• Accepters try to accept value with highest proposal n

• Learners are passive and wait for the outcome

28

Paxos Phase 1

• Proposer:
• Choose proposal number n, send <prepare, n> to

acceptors

• Acceptors:
• If n > nh

• nh = n ← promise not to accept any new proposals n’ < n
• If no prior proposal accepted

• Reply < promise, n, Ø >
• Else

• Reply < promise, n, (na , va) >
• Else

• Reply < prepare-failed > 29

Paxos Phase 2

• Proposer:
• If receive promise from majority of acceptors,

• Determine va returned with highest na, if exists
• Send <accept, (n, va || v)> to acceptors

• Acceptors:
• Upon receiving (n, v), if n ≥ nh,

• Accept proposal and notify learner(s)
na = nh = n
va = v

30

Paxos Phase 3

• Learners need to know which value chosen
• Approach #1
• Each acceptor notifies all learners
• More expensive

• Approach #2
• Elect a “distinguished learner”
• Acceptors notify elected learner, which informs others
• Failure-prone

31

32

Paxos: Well-behaved Run

<accepted, (1 ,v1)>

1

2

n

.

.

.

1 1

2

n

.

.

.
<prepare, 1>

1

<promise, 1>

1

2

n

.

.

.

<accept,
(1,v1)>

decide
v1

• Intuition: if proposal with value v chosen, then
every higher-numbered proposal issued by any
proposer has value v.

33

Paxos is Safe

Majority of
acceptors
accept (n, v):

v is chosen

Next prepare request
with proposal n+1

Race Condition Leads to Liveness Problem
“FLP Scenario”

Completes phase
1 with proposal n0

34

Starts and completes phase
1 with proposal n1 > n0

Performs phase 2,
acceptors reject

Restarts and completes phase
1 with proposal n2 > n1

Process 0 Process 1

Performs phase 2,
acceptors reject

… can go on indefinitely …

Paxos Summary

• Described for a single round of consensus
• Proposer, Acceptors, Learners

• Often implemented with nodes playing all roles
• Always safe

• Quorum intersection
• Often live

• “FLP Scenario” prevents it from always being live
• Acceptors accept multiple values

• But only one value is ultimately chosen
• Once a value is accepted by a majority it is chosen

Flavors of Paxos

• Terminology is a mess

• Paxos loosely, and confusingly defined…

• We’ll stick with
• Basic Paxos
• Multi-Paxos

Flavors of Paxos: Basic Paxos

• Run the full protocol each time
• e.g., for each slot in the command log

• Takes 2 rounds until a value is chosen

• “FLP Scenario” is dueling proposers

Flavors of Paxos: Multi-Paxos

• Elect a leader and have them run the 2nd phase
directly
• e.g., for each slot in the command log
• Leader election uses Basic Paxos

• Takes 1 round until a value is chosen
• Faster than Basic Paxos

• “FLP Scenario” is dueling proposers during leader
election
• Rarer than Basic Paxos

• Used extensively in practice!

Consensus Takeaways

• Consensus: Terminating agreement on a valid
proposal

• Consensus is impossible to always achieve
• FLP result

• Consensus is possible to achieve in practice
• With Multi-Paxos

• Mostly happens in a single round to the nearest quorum
• Sometimes takes a single round to a further quorum
• Rarely takes multiple rounds to elect a new leader and for that

node to get the request accepted
• Runs exist where no new leader is ever elected

