Distributed Systems Intro
and Course Overview

ol VET | NOV y
TES | TAM
Al EN [TvM [}

COS 418: Distributed Systems
Lecture 1

Wyatt Lloyd

Distributed Systems, What?

1) Multiple computers
2) Connected by a network
3) Doing something together

Distributed Systems, Why?

* Or, why not 1 computer to rule them all?
 Failure
 Limited computation/storage/...

* Physical location

Distributed Systems, Where?

 Web Search (e.g., Google, Bing)

* Shopping (e.g., Amazon, Walmart)

* File Sync (e.g., Dropbox, iCloud)

» Social Networks (e.g., Facebook, Twitter)
« Music (e.g., Spotify, Apple Music)

 Ride Sharing (e.g., Uber, Lyft)

* Video (e.g., Youtube, Netflix)

* Online gaming (e.g., Fortnite, DOTA2)

“The Cloud” is not
amorphous

4
B
&
|~
-

RS CSK

o - o
~

- ‘,'l -

“-.
11

1

| Bt ||

>
-
-
—a P
<=
-—

:
..__;.. ..__ L1 -

.11 100,000s of physical servers
!'h 10s MW energy consumption

N *
g .. Facebook Prlnev|||e

| HF(PM PhySICal infro, $1 B IT |’nfra

|
(
C
A

Distributed Systems Goal

« Service with higher-level abstractions/interface

* e.g., file system, database, key-value store, programming
model, ...

* Hide complexity
» Scalable (scale-out)
 Reliable (fault-tolerant)
» Well-defined semantics (consistent)

* Do “heavy lifting” so app developer doesn’t need to

Research results matter: NoSQL

Distributs

David Kan

Abstract

We describe a family
that can be used 10 dey

In this paper, we dey
works that can be us
of “hot spots”, Hor s
wish 1o simultaneous|
is ot provisiceed 0
service may be degral

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Amazon.com

ABSTRACT
Reliability at massive scale is one of the biggest challenges we
face at Amazon.com, one of the largest e<commerce operations in
the world; even lhe slightest outage has significant financial
and i trust. The Amazon.com
plalform, which provnda services for many web sites worldwide,
is implemented on top of an infrastructure of tens of thousands of
servers and network components located in many datacenters
around the world. At this scale, small and large components fail
continuously and the way persistent state is managed in the face
of these failures drives the reliability and scalability of the
software systems.

This paper presents the design and implementation of Dynamo, a

highly available key-value storage system that some of Amazon's

core services use to provide an “always-on” experience. To

achieve this level of availability, Dynamo sacrifices consistency

under cerum fmlure scemnos It makes extensive use of object
isted conflict lution in a

that pmwdu a novel interface for developers to use.

Categories and Subject Descrlptors

D.4.2 [Operating Sy]: Storage M D45
[Operating Sy:lems] Relubnhty. D42 [0penthg Systems]:
Performance;

General Terms
Algorithms, Management, Measurement, Performance, Design,
Reliability.

One of the lessons our organization has learned from operating
Amazon’s platform is that the reliability and scalability of a
system is dependent on how ns apphauon state is managed.

Amazon uses a highly d loosely coupled, service
oncnlcd hi isting of hundreds of services. In this
en there is a particul need for storage technologies

that are always availabl . For should be able
mncwmdnddnunsmchcnrshoppmgunmnfdlsksm
failing, network routes are flapping, or data centers are being
dastmyed by tomados. Therefore, the service responsible for
carts requires that it can always write to and
read from its data store, and that its data needs to be available
across multiple data centers.
Dealing with failures in an infrastructure comprised of millions of
components is our standard mode of operation; there are always a
small but significant number ofsa'vermdmwurkcmpmu

that are failing at any given time. As such A s

fers may be parti
pain comnected Lo
is a cemtral poal
le communication
Esign copes with

je accommodated
Replication is
reachable from
Ips. Weak consis-
pviding one copy
Pess 3 quorum of
(hat they wish
My in parutionod
model in which
put the noed for
eventy-

iy or indirectly,

goal 1n designang

systems need to be constructed in a manner that treats failure
handling as the normal case without impacting availability or
performance.

To meet the reliability and scaling needs, Amazon has developed
a ber of storage technologies, of which the Amazon Simple
Storage Service (also available outside of Amazon and known as
Amazon S3), is probably the best known. This paper presents the
design and implementation of Dynamo, another highly available
and scalable distributed data store built for Amazon’s platform.
Dynamo is used to manage the state of services that have very
high reliabilitv reauirements and need tight control over the

pt rephicated data
applications. We
imay read weakly
fons may conflict
pver, applications
jof conflicts since
plication.

for application-
pus systems, such
falue of semantic
pries, and soveral
pod database con-

%

13

Research results matter: Paxos

The Chubby lock service for loosely-coupled distributed systems

Mike Burrows, Google Inc.

Abstract

We describe our experiences with the Chubby lock ser-
vice, which is intended to provide coarse-grained lock-
ing as well as reliable (though low-volume) storage for
a loosely-coupled distributed system. Chubby provides
an interface much like a distributed file system with ad-
visory locks, but the design emphasis is on availability
and reliability, as opposed to high performance. Many
instances of the service have been used for over a year,
with several of them cach handling a few tens of thou-
sands of clients concurrently. The paper describes the
initial design and expected use, compares it with actual

cxample, the Google File System (7] uses a Chubby lock
to appoint a GFS master server, and Bigtable [3] uses
Chubby in scveral ways: to clect a master, to allow the
master to discover the servers it controls, and 1o permit
clients to find the master. In addition, both GFS and
Bigtable use Chubby as a well-known and available loca-
tion to store a small amount of meta-data; in effect they
use Chubby as the root of their distributed data struc-
tures. Some services use locks to partition work (at a
coarse grain) between several servers.

Before Chubby was deployed, most distributed sys-
tems at Google used ad hoc methods for primary elec-

finn (whan wanrd cnold ha dunlicatad aathact hasm) s

14

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

Jeff@google.com, sanjay @ google.com

Google, Inc.

Abstract

MapReduce is a programming model and an associ-
ated implementation for processing and g ing large

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across

data sets, Users specify a map function that processes a
key/value pair to g asetofi diate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many
real world tasks are expressible in this model, as shown
in the paper.

Programs written in this functional style are automati-
cally parallelized and executed on a large cluster of com-
modity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-
gram's execution across a set of machines, handling ma-
chine fail and ging the required inter-machi
communication. This allows programmers without any
experience with parallel and distributed systems to cas-
ily utilize the resources of a large distributed system.

Our implementation of MapReduce runs on a large
cluster of commodity machines and is highly scalable:
a typical MapReduce computation processes many ter-
abvtes of data on thousands of machines. Programmers

hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
these issues.

Asa ion to this plexity, we designed a new
abstraction that allows us to express the simple computa-
tions we were trying to perform but hides the messy de-
tails of parallelization, fault-tolerance, data distribution
and load balancing in a library. Our abstraction is in-
spired by the map and reduce primitives present in Lisp
and many other functional languages. We realized that
most of our computations involved applying a map op-
eration to each logical “record” in our input in order to

pute a set of i diate key/value pairs, and then
applying a reduce operation to all the values that shared
the same key, in order to combine the derived data ap-
propriately. Our use of a functional model with user-
specified map and reduce operations allows us to paral-

Research results matter: MapReduce

Flink

S distributed stream
computing platform

5> STORM

15

Course Organization

Learning the material: People

e Lecture M/W 10-1050
* Professor Wyatt Lloyd
» Slides available on course website

* Precept:
* TAs Theano Stavrinos, Zhenyu Song, and Chris Hodsdon

 Main Q&A forum: www.piazza.com

 No anonymous posts or questions
« Can send private messages to instructors
* (Extra credit for answering)

Learning the Material: Lectures!

» Attend lectures and precepts and take notes!
* Lecture slides posted day/night before

« Recommendation: Print slides & take notes
* Not everything covered in class is on slides
* You are responsible for everything covered in class

* No required textbooks

* Links to Go Programming textbook and two other
distributed systems textbooks on website

Grading

* Five assignments (10% each)
* 90% 24 hours late, 80% 2 days late, 50% >5 days late
* Three free late days (we’ll figure which one is best)

* Two exams (50% total)
« Midterm exam before fall recess (25%)
 Final exam during exam period (25%)

Policies: Write Your Own Code

Programming is an individual creative process. At first,
discussions with friends is fine. When writing code,
however, the program must be your own work.

Do not copy another person’s programs, comments, or
any part of submitted assignment. This includes
character-by-character transliteration but also
derivative works. Cannot use another’s code, etc.
even while “citing” them.

Writing code for use by another or using another’s code
is academic fraud in context of coursework.

Do not publish your code e.g., on github, during/after
course!

Policies: Write Your Own Code

Assignment 1 (in three parts)

* Learn how to program in Go

» Basic Go assignment (due Sept 20)
» “Sequential” Map Reduce (due Sept 27)
* Distributed Map Reduce (due Oct 4)

Warnings

This is a 400-level course,
with expectations to match.

23

Warning #1:
Assignments are a LOT of work

« Assignment 1 is purposely easy to teach Go. Don’t be fooled.

» Last year they gave 3-4 weeks for later assignments;
many students started 3-4 days before deadline. Disaster.

* Distributed systems are hard
* Need to understand problem and protocol, carefully design

« Can take 5x more time to debug than “initially program”

» Assignment #4 builds on your Assignment #3 solution, i.e., you
can’t do #4 until your own #3 is working! (That’s the real world!)

Warning #2:

Software engineering, not just programming

« COS126, 217, 226 told you how to design & structure
your programs. This class doesn’t.

* Real software engineering projects don’t either.

* You need to learn to do it.

* If your system isn’t designed well, can be
significantly harder to get right.

 Your friend: test-driven development

« We’'ll supply tests, bonus points for adding new ones

Warning #3: .

Don’t expect 24x7 answers Google

Google Search I'm Feeling Lucky

* Try to figure out yourself

* Piazza not designed for debugging
« Utilize right venue: Go to office hours
» Send detailed Q’s / bug reports, not “no idea what’s wrong”

* Instructors are not on pager duty 24 x 7
* Don’t expect response before next business day
* Questions Friday night @ 11pm should not expect fast
responses. Be happy with something before Monday.
 Implications
» Students should answer each other (+ it’s worth credit)
 Start your assignments early!

Topics Preview

Fundamentals

* Lectures
* Network communication and Remote Procedure Calls
* Time, logical clocks
» Vector clocks, distributed snapshots

* Precepts
* Lots of Go
» Mapreduce (assignment 1)

Eventual Consistency and Scaling Out

* Lectures
« Eventual consistency and Bayou
* Peer-to-peer systems and Distributed Hash Tables
» Scale-out key-value storage and Dynamo

* Precepts
* More Go
* Distributed snapshots (assignment 2)

Replicated State Machines

* Lectures
» Replicated State Machines, Primary-Backup
» Reconfiguration and View Change Protocols
» Consensus and Paxos (and FLP)
» Leader Election and RAFT
« Byzantine Fault Tolerance

* Precepts

* Viewstamped replication
* RAFT (Assignments 3,4)

Strong Consistency and Scaling Out
with Transactions

* Lectures
» Strong consistency and the CAP Theorem
* Atomic commit
» Pessimistic concurrency control
» Optimistic concurrency control
« Spanner (Concurrency control + Paxos!)
 The SNOW Theorem and Systems

* Precepts
» Consistency

« Concurrency control
« Spanner and SNOW

Various Topics

* Lectures
* Blockchains
 Big data processing
 Cluster scheduling and fairness
* Cluster load testing
» Content delivery networks

* Precepts
 Big data systems

