
Distributed Systems Intro
and Course Overview

COS 418: Distributed Systems
Lecture 1

Wyatt Lloyd

Distributed Systems, What?

1)Multiple computers
2)Connected by a network
3)Doing something together

Distributed Systems, Why?
• Or, why not 1 computer to rule them all?

• Failure

• Limited computation/storage/…

• Physical location

• Web Search (e.g., Google, Bing)
• Shopping (e.g., Amazon, Walmart)
• File Sync (e.g., Dropbox, iCloud)
• Social Networks (e.g., Facebook, Twitter)
• Music (e.g., Spotify, Apple Music)
• Ride Sharing (e.g., Uber, Lyft)
• Video (e.g., Youtube, Netflix)
• Online gaming (e.g., Fortnite, DOTA2)
• …

Distributed Systems, Where?

“The Cloud” is not
amorphous

5

6Microsoft

7

Google

8Facebook

9Facebook

10Facebook

100,000s of physical servers
10s MW energy consumption

Facebook Prineville:
$250M physical infro, $1B IT infra

Distributed Systems Goal

• Service with higher-level abstractions/interface
• e.g., file system, database, key-value store, programming

model, …

• Hide complexity
• Scalable (scale-out)
• Reliable (fault-tolerant)
• Well-defined semantics (consistent)

• Do “heavy lifting” so app developer doesn’t need to

13

Research results matter: NoSQL

14

Research results matter: Paxos

15

Research results matter: MapReduce

Course Organization

16

• Lecture M/W 10-1050
• Professor Wyatt Lloyd
• Slides available on course website

• Precept:
• TAs Theano Stavrinos, Zhenyu Song, and Chris Hodsdon

• Main Q&A forum: www.piazza.com
• No anonymous posts or questions
• Can send private messages to instructors
• (Extra credit for answering)

17

Learning the material: People

Learning the Material: Lectures!
• Attend lectures and precepts and take notes!

• Lecture slides posted day/night before
• Recommendation: Print slides & take notes
• Not everything covered in class is on slides
• You are responsible for everything covered in class

• No required textbooks
• Links to Go Programming textbook and two other

distributed systems textbooks on website

18

Grading
• Five assignments (10% each)

• 90% 24 hours late, 80% 2 days late, 50% >5 days late
• Three free late days (we’ll figure which one is best)

• Two exams (50% total)
• Midterm exam before fall recess (25%)
• Final exam during exam period (25%)

19

Policies: Write Your Own Code
Programming is an individual creative process. At first,

discussions with friends is fine. When writing code,
however, the program must be your own work.

Do not copy another person’s programs, comments, or
any part of submitted assignment. This includes
character-by-character transliteration but also
derivative works. Cannot use another’s code, etc.
even while “citing” them.

Writing code for use by another or using another’s code
is academic fraud in context of coursework.

Do not publish your code e.g., on github, during/after
course!

20

Policies: Write Your Own Code
Programming is an individual creative process. At first,

discussions with friends is fine. When writing code,
however, the program must be your own work.

Do not copy another person’s programs, comments,
README description, or any part of submitted
assignment. This includes character-by-character
transliteration but also derivative works. Cannot use
another’s code, etc. even while “citing” them.

Writing code for use by another or using another’s code
is academic fraud in context of coursework.

Do not publish your code e.g., on github, during/after
course!

21

Assignment 1 (in three parts)

• Learn how to program in Go
• Basic Go assignment (due Sept 20)

• “Sequential” Map Reduce (due Sept 27)

• Distributed Map Reduce (due Oct 4)

22

Warnings
This is a 400-level course,
with expectations to match.

23

• Assignment 1 is purposely easy to teach Go. Don’t be fooled.

• Last year they gave 3-4 weeks for later assignments;
many students started 3-4 days before deadline. Disaster.

• Distributed systems are hard
• Need to understand problem and protocol, carefully design
• Can take 5x more time to debug than “initially program”

• Assignment #4 builds on your Assignment #3 solution, i.e., you
can’t do #4 until your own #3 is working! (That’s the real world!)

24

Warning #1:
Assignments are a LOT of work

Warning #2:
Software engineering, not just programming

• COS126, 217, 226 told you how to design & structure
your programs. This class doesn’t.

• Real software engineering projects don’t either.

• You need to learn to do it.

• If your system isn’t designed well, can be
significantly harder to get right.

• Your friend: test-driven development
• We’ll supply tests, bonus points for adding new ones

25

• Try to figure out yourself
• Piazza not designed for debugging

• Utilize right venue: Go to office hours
• Send detailed Q’s / bug reports, not “no idea what’s wrong”

• Instructors are not on pager duty 24 x 7
• Don’t expect response before next business day
• Questions Friday night @ 11pm should not expect fast

responses. Be happy with something before Monday.
• Implications

• Students should answer each other (+ it’s worth credit)
• Start your assignments early!

26

Warning #3:
Don’t expect 24x7 answers

Topics Preview

27

Fundamentals
• Lectures

• Network communication and Remote Procedure Calls
• Time, logical clocks
• Vector clocks, distributed snapshots

• Precepts
• Lots of Go
• Mapreduce (assignment 1)

Eventual Consistency and Scaling Out
• Lectures

• Eventual consistency and Bayou
• Peer-to-peer systems and Distributed Hash Tables
• Scale-out key-value storage and Dynamo

• Precepts
• More Go
• Distributed snapshots (assignment 2)

Replicated State Machines
• Lectures

• Replicated State Machines, Primary-Backup
• Reconfiguration and View Change Protocols
• Consensus and Paxos (and FLP)
• Leader Election and RAFT
• Byzantine Fault Tolerance

• Precepts
• Viewstamped replication
• RAFT (Assignments 3,4)

Strong Consistency and Scaling Out
with Transactions
• Lectures

• Strong consistency and the CAP Theorem
• Atomic commit
• Pessimistic concurrency control
• Optimistic concurrency control
• Spanner (Concurrency control + Paxos!)
• The SNOW Theorem and Systems

• Precepts
• Consistency
• Concurrency control
• Spanner and SNOW

Various Topics
• Lectures

• Blockchains
• Big data processing
• Cluster scheduling and fairness
• Cluster load testing
• Content delivery networks

• Precepts
• Big data systems

