Chapter 8

Sometimes it’s good to be lazy

Typically, languages such as OCaml (SML, Lisp or Scheme) evaluate expressions by
a call-by-value discipline. All variables in OCaml are bound by value, which means
that variables are bound to fully evaluated expressions. For example consider let-
expressions: In OCaml, we would write 1et x = et in ¢2. How would this expression
be evaluated? We first evaluate e1 to some value vi and then bind the name of the
bound variable x to the value vi before we continue evaluating <2 in an environment
where we have established the binding between x and v1.

A similar evaluation strategy is applied when evaluating function applications. We
first evaluate the argument before it is passed to the function. For example, in the
expression (fun x -> e) e1 We first evaluate the expression e1 to some value vi before
we pass the value vi to the parameter x of the function effectively binding the name
x to the value v1

According to a call-by-value strategy, expressions are evaluated and their values
bound to variables, no matter if this variable is ever needed to complete execution.
For example:
let x = horribleComp(345) in 5

In this simple example, we will evaluate norriblecomp(345) to some value v1 and
establish the binding between the variable x and v1, although it is clearly not needed.
For this reason, languages whose evaluation is call-by-value are also called eager.

Alternatively, we could adapt a call-by-name strategy. This means variables can
be bound to unevaluated expressions, i.e. computation. In the previous example, we
would suspend the computation of nhorriblecomp(345), until the value for x is required
by some operation. For example:
let x = horribleComp (345) in x + x

In this example, it is necessary to evaluate the binding for x in order to perform
the addition x + x. Languages that adopt the call-by-name discipline are also called

73 © B. Pientka — Fall 2017

Chapter 8: Sometimes it’s good to be lazy

lazy languages, because they delay the actual evaluation until it is required. We also
often say evaluation for norriblecomp(345) is suspended, and only forced when required.

One important aspect of lazy evaluation is memoization. Let us reconsider the
previous example. Since the variable x occurs twice in the expression x + x, it is
natural to ask if the expression horriblecomp(345) is now evaluated twice. If this would
be the case, then being lazy would have backfired! In reality, lazy evaluation adopts
a refinement of the call-by-name principle, called call-by-need principle. According to
the call-by-need principle, variables are bound to unevaluated expressions, and are
evaluated only as often as the value of that variable’s binding is required to complete
the computation. So in the previous example, the binding of x is needed twice in
order to evaluate the expression x + x. According to the call-by-need principle, we
only evaluate once horribleComp(345) to a value vi, and then we memoize this value and
associate the binding for x to the value vi. In other words, the by-need principle says
the binding of a variable is evaluated at most once, not at all, if it is never needed,
and exactly once, if it is ever needed. Once a computation is evaluated, its value is
saved for the future. This is called memoization.

The main benefit of lazy evaluation is that it supports demand-driven computation.
We only compute a value, if it is really demanded somewhere else. This is particularly
useful when we have to deal with online data structures, i.e. data-structures that are
only created insofar as we examine them.

e Infinite data structures: For example, if we would want to represent all prime
numbers this cannot be done eagerly. We cannot ever finish creating them all,
but we can create as many as we need for a given run of a program!

e Interactive data structures such as sequences of inputs. Users inputs are not
predetermined at the start of the execution but rather created on demand in
response to the progress of computation up to a given point.

Surprisingly we can model lazy programming with the tools we have seen so far,
namely functions and records.

How do we prevent the eager evaluation of an expression? - The key idea is to
suspend computation using functions. Since we never evaluate inside the body of a
function, we can suspend the computation of 3+7 by wrapping it in a function, i.e.
fun () -> 3 + 7. In general, we will use functions of type wnit -> ’a to describe the
suspended computation of type ’a. To highlight the fact that a function unit -> ’a
describes a suspended computation, we tag such suspended computations with the
constructor Susp.

1 type ’a susp = Susp of (unit -> ’a)

74 © B. Pientka — Fall 2017

Chapter 8: Sometimes it’s good to be la#:1 Defining infinite objects via observations

We can then delay computation labelling it with the constructor susp using the
function de1ay and force the evaluation of suspendend computation using the function
force.

(x force: ’a susp — ’a *)
> let force (Susp f) = £ ()

We force a suspended computation by applying £ which has type unit -> ’a to unit.
For example, the following evaluates using call-by-name.

let x = Susp(fun () -> horribleComp (345)) in force x + force x

Only when we force x will be actually compute and evaluate horribleComp(345).

8.1 Defining infinite objects via observations

Finite structures such as natural numbers or finite lists are modelled by (inductive)
data types. For example, the data type ’a 1ist given below

type ’a list = Nil | Cons of ’a * ’a list

encodes the following inductive definition of finite lists:

e il is a list of type ’a 1ist.

e If n is of type ’a and ¢ is a list of type ’a 1ist, then cons (n,t) is a list of type

’a list.

The inductive definition defines how we can construct finite lists from “smaller”
lists. In mathematical terminology, the given inductive definition defines a least fix
point. We can manipulate and analyze lists (or other inductively defined data) via
pattern matching. Key to writing terminating programs is that our recursive call is
made on the “smaller” list.

How can we model infinite structures such as streams or processes? - Instead of
saying how to construct such data, we define infinite objects via the observations we
can make about them. While finite objects are intensional, i.e. two objects are the
same if they have the same structure, infinite objects are extensional, i.e. they are
the same if we can observe them to have the same behavior. We already encountered
infinite objects with extensional behavior, namely functions. Given the two following
functions:

let f x (x + 5) *x 2

2 let g x = 2xx + 10

75 © B. Pientka — Fall 2017

Chapter 8: Sometimes it’s good to be lazy 8.2 Create a stream of 1’s

we can observe that for any input n given to g the result will be same as £ n. We
cannot however pattern match on the body of the function ¢ and g analyze their
structure/definition. Similarly, when we defined operations on Church numerals we
were unable to directly pattern match on the given definition of a Church numeral.
Instead, we observed the behavior by applying them.

To summarize, we cannot directly pattern mach on a function; we can only apply
the function to an argument, effectively performing an experiment, and observe the
result or behavior of the function.

Similarly, we want to define a stream of natural numbers via the observations we
can make about it. Given a stream 1 2 3 4 ..., we may ask for the head of the stream
and obtain 1 and we may ask for the tail of the stream obtaining 2 3 4 Programs
which manipulate streams do not terminate - in fact talking about termination of
infinite structures does not make sense. However, there is a notion when a program
about streams is “good”, i.e. we can continue to make observations about streams.
We call such programs productive. They may run forever, but at every step we can
make an observation. This is unlike looping programs which run forever but are not
productive.

To define infinite structures via the observations we exploit the idea of delaying
the evaluation of an expression. For example, we can define elements of type ’a str
(read as a stream of elements of type ’a) via two observations: nd and t1. Asking for
the head of a stream using the observation nd returns an element of type ’a. Asking
for the tail of a stream using the observation t1 returns a suspended stream. It is key
that the stream is suspended here, since we want to process streams on demand. We
will only unroll the stream further, when we ask for it, i.e. we force it.

type ’a str = {hd: ’a ; tl : (’a str) susp}t

In some sense a suspended stream is a box; in order to know what it looks like,
we need to force it, i.e. open the box, to look inside.

8.2 C(Create a stream of 1’s

Now we are in the position to create an infinite stream of one’s for example, i.e.
111 ...

let rec ones = {hd = 1 ; tl = Susp (fun () -> ones)}
The head of a stream of one’s is simply 1. The tail of a stream of one’s is defined
recursively referring back to its definition. We can see here that it is key that the re-

cursive call ones is inside the function fun () -> ones thereby preventing the evaluation
of ones eagerly which would result in a looping program.

76 (© B. Pientka — Fall 2017

~

9

s { hd

Chapter 8: Sometimes it’s good to be lazy 8.3 Power and Integrate series

Maybe even more interestingly, we can now create a stream for the natural num-
bers as follows. We first define a stream of natural numbers starting from ». Hence
the head of such a stream is simply n. The tail of such a stream is simply referring
back to its definition incrementing n.

(* numsFrom : int -> int str *)
let rec numsFrom n =

{hd = n ;
tl = Susp (fun () -> numsFrom (n+1))}

let nats = numsFrom O

8.3 Power and Integrate series

Additional Examples:

(* Sequent of 1 3 9 27 .. x*)
let rec fseq n k =
{ hd = n ;
tl = Susp (fun () -> fseq (n*k) k) }

(* Sequent 1, 1/2, 1/4, 1/8, 1/16 ... *)
let rec geom_series x =
{ hd = (1.0 /. x) ;
tl = Susp (fun () -> geom_series (x *x. 2.0)) }

Next we show how to directly define the power series.

1, 2/3, 4/9, 8/27, ... = series(2*/3*)

let rec pow n x = if n = 0 then 1
else x * pow (n-1) x

let rec power_series x =
(float (pow x 2)) /. (float (pow x 3)) ;
Susp (fun () -> power_series (x+1)) }

tl

We can now define how to integrate a series:

let integrate_series s =
let rec aux s n =
{ hd = s.hd /. (float n) ;
tl = Susp (fun () -> aux (force s.tl) (n + 1))
}
in
aux s 1

77 (© B. Pientka — Fall 2017

Chapter 8: Sometimes it’s good to&hd Mayting recursive programs about infinite data

8.4 Writing recursive programs about infinite data

It is often useful to inspect a stream up to a certain number of elements. This can be
done by the next function:

1 (x int -> ’a str -> ’a list x*)

2 let rec take_str n s = match n with
| 0o -> [1
4 | n -> s.hd :: take_str (n-1) (force s.tl)

Another example is dropping the first » elements of a stream.

1 (¥ stream_drop: int -> ’a str -> ’a str *)
2 let rec stream_drop n s = if n = 0O then s
else stream_drop (n-1) (force s.tl)

8.5 Adding two streams

Next, let us add two streams. This follows the same principles we have seen so far.

1 (x val addStreams : int str -> int str -> int str x)

2 let rec addStreams sl s2 =

3 {hd sl.hd + s2.hd ;

4 tl Susp (fun () -> addStreams (force s1.tl) (force s2.tl))
5 }

8.6 Fibonacci

Let us move on to generating some more interesting infinite sequences of numbers
such as the Fibonacci number series. The Fibonacci Sequence is the series of num-
bers:

0,1,1,2,3,5,8,13,21, 34, ...

The next number is found by adding up the two numbers before it.

n|Fib(n) + Fib(n+1)|Fib(n +2)
0/0,1,... 1,... 1,...
11,1, 1., 2,...
201,2,... 2. 3,..

The stream in the right column, labelled Fib(n + 1), is the tail of the stream de-
scribed in the left column, labelled Fib(n). By adding up the two streams pointwise,
we should be able to compute the next element in the stream!

78 (© B. Pientka — Fall 2017

Chapter 8: Sometimes it’s good to be lazy 8.7 Map function on streams

fibs = 0 1 1 2 3 5
+ N+ N+ N N N
fibs’ = | 1 2 3 5 8

The key observation is that we need to know the n-th and (n+1)-th element to
compute the next element. In terms of streams it means to define the next element in
a stream we need to know already not only the head of the stream we are defining,
but also the head of the tail of the stream!

We will definie the fibonacci series hence mutually recursive as follows:

e The first element of the fibonacci series is o.

e The second element (i.e. the head of the tail or the head of fibs’) of the fi-
bonacci series is 1.

e The remaining series (i.e. the tail of the tail or the tail of fibs’) is obtained by
adding the stream fibs and fibs’.

This can be implemented using records and suspended functions in OCaml di-
rectly.

1 let rec fibs =

2{ hd = 0 ;
tl = Susp (fun () -> fibs’) }
4 and fibs’ =
s {hd = 1 ;
6 tl = Susp (fun () -> addStreams fibs fibs’)

7}

8.7 Map function on streams

How can we write some of the functions we have seen for lists for streams? — Let’s
start with the map function.

1 (x smap: (’a -> ’b) -> ’a str -> ’b str *)
2 let rec smap f s =

3 { hd = £ (s.hd) ;

4 tl Susp (fun () -> smap f (force s.tl))
5}

Note it is important that we force the tail of the stream when making the recursive
call, since s.t1 has type (’a str) susp, i.e. it is a suspended stream. However, smap
requires a stream, not a suspended stream.

79 (© B. Pientka — Fall 2017

Chapter 8: Sometimes it’s good to be lazy 8.8 Filter

8.8 Filter

(x val filter_str : (’a -> bool) -> ’a str -> ’a str
val find_hd : (’a -> bool) -> ’a str -> ’a * ’a str susp

3 %)

-

let rec filter_str p s =
let h,t = find_hd p s in
{hd = h;
tl Susp (fun () -> filter_str p (force t))
}
and find_hd p s =
if p (s.hd) then (s.hd, s.tl)
else find_hd p (force s.tl)

Note that find_nd is not productive. In principle, we could test for a property p
which is never fullfiled by any element in the stream s. We would then continue
to call eagerly find_hd p (force s.t1). In fact, productive programs should always sus-
pend their recursive computation. Since find_hd iS not productive, fiiter is also not
necessarily productive.

Using fiiter, we can now define easily a stream of even and odd numbers.

let evens = filter_str (fun x -> (x mod 2) = 0) (force (nats.tl))

3 let odds = filter_str (fun x -> (x mod 2) <> 0) nats

8.9 Sieve of Eratosthenes

A great application of lazy programming and streams is computing a stream of prime
numbers given a stream of natural numbers. The sieve of Eratosthenes is a simple,
ancient algorithm for finding all prime numbers. It does so by iteratively marking or
filtering out the multiples of each prime, starting with the multiples of 2.

The idea can be best described by an example. We begin with a stream s of natural
numbers starting from 2,i.e. 23456

1. The first prime number we encounter is the head of the stream s, i.e. 2 when
we have astream 23456

2. Given the remaining stream 3 4 5 6 ... (i.e. the tail of s), we first remove all
numbers which are dividable by 2 obtaining a stream 3 5 We then start
with 1. again.

To find all the prime numbers less than or equal to 30 (and beyond), proceed as
follows. First generate a list of integers from 2 to 30 and beyond

80 (© B. Pientka — Fall 2017

Chapter 8: Sometimes it’s good to be lazy 8.10 Lazy finite lists

23456789210111213 1415161718 19 20 21 22 23 24 25 26 27 28 29 30 ...

The first number in the list is 2; this is the first prime number; cross out every 2nd
number in the list after it (by counting up in increments of 2), i.e. all the multiples
of 2:

357911131517192123252729 ...

Next prime number after 2 is 3; now cross out every number which can be divided
by 3, i.e. all the multiples of 3:

5711131719232529 ...

Next prime number is 5; cross out all the multiples of 5:

7111317192329 ...

Next prime number is 7; the next step would be to cross out all multiples of 7; but
there are none. In fact, the numbers left not crossed out in the list at this point are
all the prime numbers below 30.

Following the idea described, we now implement a function sieve which when
given a stream s of natural numbers generates a stream of prime numbers. The head
of the prime number stream is the head of the input stream. The tail of the prime
number stream can be computed by filtering out all multiples of s.na from the tail of
the input stream.

let no_divider m n = not (n mod m = 0)

3 let rec sieve s =

{ hd
tl
}

s.hd ;
Susp (fun () -> sieve (filter_str (no_divider s.hd) (force s.tl)))

8.10 Lazy finite lists

On demand evaluation is not only necessary when we deal with infinite structures,
but it can also be useful when processing structures which can possibly be finite. We
show here how to define (possibly) finite lists via observations to allow on demand
evaluation. This is accomplished by nesting inductive and coinductive definitions.
First, we define ’a 1azy_1ist coinductively via the observation na and 1. The tail of a

81 (© B. Pientka — Fall 2017

)

Chapter 8: Sometimes it’s good to be lazy 8.11 Summary

possibly finite list may be finite, i.e. we have reached the end of the list and the list
is empty, or we can continue to make observations, i.e. the list is not empty.
type ’a lazy_list = {hd: ’a ; tl : (’a fin_list) susp}
and ’a fin_list = Empty | NonEmpty of ’a lazy_list

We can now re-visit the standard functions for infinite lists and rewrite them for
lazy (finite) lists. We show below the implementation of map for lazy lists. We split
the function into two mutual recursive parts: map is a recursive function; if the given
list xs is Empty, then we return empty; if we have not reached the end, we continue to
apply lazily ¢ to xs tagging the result with NonEmpty. map’ applies lazily ¢ to a list s; this
is done by defining what observations we can make about the resulting list given a
function £ and an input list s.
let rec map f s =
{ hd = f s.hd ;

tl = Susp (fun () -> map’ f (force s.tl))
}

and map’ f xs = match xs with
| Empty -> Empty
| NonEmpty xs -> NonEmpty (map f xs)

8.11 Summary

We demonstrated in this Chapter how to write on-demand programs using observa-
tions. This is useful for processing infinite data such as streams but also finite data
which may be too large to be processed and generated eagerly. The idea of modelling
infinite data via observations (i.e. destructors) is the dual to modelling finite data via
constructors. While this view has been explored in category theory and algebra, it
has only recently been been picked up and incorporated into actual programming
practice up by A. Abel and B. Pientka together with their collaborators [1]. While
pattern matching is used to analyze finite data, they introduced the idea of copattern
matching to describe observations about infinite data. Based on their work OCaml
was extended with direct support for infinite data and copattern matching (see opam
package for copatterns; see ocaml4.04.0+copatterns).

82 (© B. Pientka — Fall 2017

