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Course Themes
• Functional vs. imperative programming

– a new way to think about the algorithms you write

• Modularity
• Abstraction
• Parallelism
• Equational reasoning
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Course Themes
• Functional vs. imperative programming

– a new way to think about the algorithms you write

• Modularity
• Abstraction
• Parallelism
• Equational reasoning

Useful on a day-to-day basis and in research to transform the 
way people think about solving programming problems.
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Dave:  
Hey Jen, what's networking?

Jen:
Oooh, it's super-awesome.  
No lambda calculus required!

A Quick Story Circa 2009 
@ Princeton

Nate:
Too bad about the lambda calculus.
But fill us in.



What is Networking?

end-hosts need 
to communicate
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What is Networking?

Ethernet switches 
connect them
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What is Networking?

which decide how packets 
should be forwarded

Control Plane
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What is Networking?

and actually forward them 

Data Plane
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Nate:  
Sounds simple enough.  Is that it?

Jen:
There's a little more … 
Still no lambda calculus though.

A Quick Story Circa 2009
@ Princeton

Dave:  
Darn.



What is Networking?
add servers ...
connected by routers
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What is Networking?

different control planes
12

plug-and-play

structured and 
optimized

add servers ...
connected by routers



w/ similar data planes 

What is Networking?
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add servers ...
connected by routers



What is Networking?

we need gateway to 
bridge them
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What is Networking?

and load balancing 
for servers
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What is Networking?

there are other ISPs 
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What is Networking?

requiring 
inter-domain routers
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What is Networking?

and a firewall to handle 
malicious traffic
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What is Networking?

and mobile endpoints

19



What is Networking?

requiring wireless 
basestations
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What is Networking?

and more middleboxes for
billing, lawful intercept, DPI
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Dave:  
???     Lambda calculus is easier.

Jen:
:-)   Big mess, eh?

… but there is a new way to do things …

A Quick Story Circa 2009
@ Princeton



This is a Control Plane Issue
each color represents a 

different set of control-plane 
protocols and algorithms
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The Data Planes are Similar
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decouple control and data planes
by providing open standard API

Software Defined Networks
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Centralize Control

Controller Platform
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Controller Application

OpenFlow



OpenFlow Data Plane Abstraction

Pattern Action Priority Counters
srcip = 1.2.*,
dstip = 3.4.5.*

drop 1 76

srcip = *.*.*.*
dstip = 3.4.5.*

fwd 2 2 13

srcip = *.*.*.*
dstip = *.*.*.*

controller 3 22

Operations:
– Install rule
– Uninstall rule
– Ask for counter values

The Payoff:
– Simplicity
– Generality



OpenFlow
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Events up:
• Topology changes
• Traffic statistics
• Unprocessed arriving packets

Commands down:
• Install rule
• Uninstall rule
• Query statistics
• Send packets

Controller Platform

Controller Application

Data Plane



The Payoff

Simple, open interface:
– Easy to learn:  Even I can do it!

– Enables rapid innovation by academics and industry

– Everything in the data center can be optimized
• The network no longer "gets in the way”

– Commoditize the hardware 
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Huge Momentum in Industry

Bought for $1.2 x 109

(mostly cash)
30

Entire backbone 

runs OpenFlow
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Dave:
Cool.  Let's get this party started.

Jen:
So … SDN is a big deal.

A Quick Story Circa 2009
@ Princeton



The PL Perspective:
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Controller Platform

Controller Application

A new piece of our critical infrastructure is now available 
for programming

A new kind of 
heterogeneous 
distributed
system

multi-component 
applications:
• modularity
• composition
• abstraction
• information hiding

simple, clean, narrow 
interface:
• a new assembly 

language
• … needing 

domain-specific 
abstractionsresource constraints:

• optimization problems

shared/used by 
multiple entities
• security

24-7 availability:
• correct-by-construction 

abstractions
• defect detection
• verification
• testing
• fault tolerance
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www.frenetic-lang.org

A DSL for modular network configuration [ICFP 11, POPL 12, NSDI 13, POPL 14, NSDI 15] 



The Biggest Problem:  Modularity
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Controller Platform

LBRouteMonitor FW

We still need all the functionality of old networks:
The only way to engineer it is through modular design.



9

Repeater
Module

Controller Application

inport =1 → fwd 2
inport =2 → fwd 1

1 2

Monitoring
Module

Query web traffic:
inport = 1, dstport = 80 ?

P installed

Bottom Line:  It doesn’t work: 
• repeater rules are too coarse-grained for desired monitoring
• installing new monitoring rules will clobber the repeater actions

OpenFlow is Anti-Modular



Anti-Modularity: A Closer Look

def switch_join(switch):
repeater(switch)

def repeater(switch):
pat1 = {in_port:1}
pat2 = {in_port:2}
install(switch,pat1,DEFAULT,None,[output(2)])
install(switch,pat2,DEFAULT,None,[output(1)])  

def monitor(switch):
pat = {in_port:2,tp_src:80}
install(switch, pat, DEFAULT, None, [])
query_stats(switch, pat)

def stats_in(switch, xid, pattern, packets, bytes):
print bytes
sleep(30)
query_stats(switch, pattern)

Repeater

Web  Monitor

def switch_join(switch)
repeater_monitor(switch)

def repeater_monitor(switch):
pat1 = {in_port:1}
pat2 = {in_port:2}
pat2web = {in_port:2, tp_src:80}
Install(switch, pat1, DEFAULT, None, [output(2)])
install(switch, pat2web, HIGH, None, [output(1)])
install(switch, pat2, DEFAULT, None, [output(1)])
query_stats(switch, pat2web)

def stats_in(switch, xid, pattern, packets, bytes):
print bytes
sleep(30)
query_stats(switch, pattern)

Repeater/Monitor

blue = from repeater
red = from web monitor
green = from neither
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OpenFlow is Anti-Modular

You can’t (easily and reliably) compose:
– a billing service with a repeater
– a firewall with a switch
– a load balancer with a router
– one broadcast service with another
– policy for one data center client with another
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Solution:  Functional Programming!

Controller Platform

RouteMonitorFW

Stop thinking imperatively:  
• Don’t program with update/delete commands for concrete rules

And lift the level of abstraction:  
• Use pure functions as data structures to describe network policy
• Provide primitives to build complex policies from simple ones
• Let a compiler and run-time do rule synthesis & installation

Compiler & Run Time
linguistic
interface

; +

operators for policy
composition



Frenetic Architecture
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Receive
Event

Process 
Event

Network-wide 
Policy

Generate
Policy

Compile
Policy

Messages
to SwitchesTopology 

Change /
Network Stat /

Packet In

controller
platform +
run time

frenetic
application
program



Rather than managing (un)installation of concrete rules, programmers specify 
what a network does using pure functions.

implements f

f : located_packet → located_packet set

location = (switch, port)

packet

controller

count?
bytes?

location = bucket b

packet contents?

Frenetic Policy Language
[Phase 1]



Rather than managing (un)installation of concrete rules, programmers specify 
what a network does using pure functions.

f : located_packet → located_packet set

network execution

Frenetic Policy Language
[Phase 1]

f f ftopo topo



Firewalls: The Simplest Policies

false drops all packets fun p -> { }

true admits all packets fun p -> { p }

Policy Explanation Function

srcIP=10.0.0.1 admits packets with srcIP = 10.0.0.1
drops others

fun p -> 
if p.srcIP = 10.0.0.1 then 

{ p }
else

{    }

q1 /\ q2, 
q1 \/ q2,
~q

admits packets satisfying
q1 /\ q2, 
q1 \/ q2, 
~q

fun p -> (q1 p) U (q2 p)

fun p -> (q1 p) Π (q2 p)

fun p -> 
match (q1 p) with

| { } -> { p }
|  _ -> { }



Firewalls: The Simplest Policies

Example:  Block all packets from source IP 10.0.0.1 and 10.0.0.2
and except those for web servers

Solution:  ~(srcIP=10.0.0.1 /\ srcIP=10.0.0.2) \/ tcp_src_port = 80

web traffic sent here



Firewalls: The Simplest Policies

Example:  Allow traffic coming in to switches A, port 1 and 
switch B, port 2 to enter our network.  Block others.

Solution:  (switch=A /\ inport=1) \/ (switch=B & inport=2)



Moving Packets from Place to Place
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A
1 3

2

fwd 2

Policy Explanation Function

forward all packets out port 2 fun p -> { p[port:= 2] }



Combining Policies
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A
1 3

2

port=1; fwd 2

Policy Explanation

Function

only consider packets with port = 1
then
forward all such packets out port 2

let filter_port x p = if p.port = x then { p } else { } in
let fwd x p = p.port <- x in
(filter_port 1) <> (fwd 2)  

where:
a <> b = fun packet ->

let s = a packet in
Set.Union (Set.map b s)



Multiple Flows
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A
1 3

2

(port=1; fwd 2) +
(port=2; fwd 3)

Policy Explanation

Function

(filter_port 1 <> fwd 2) +
(filter_port 2 <> fwd 3) 

where:
(+) a b = fun packet ->

Set.Union
{(a packet),
(b packet)}

(if port = 1 then forward out port 2) and also
(if port = 1 then forward out port 2)



Composing Policies
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A B
1 1 33

2 2

(switch = A; policyA) +
(switch = B; policyB)

Policy Explanation

(if switch=A then policyA) and also
(if port = 1 then policyB)

let policyA =
(port=1; fwd 2) +
(port=2; fwd 3)

(if port = 1 then forward out port 2) and also
(if port = 1 then forward out port 3)

let policyB =
port=2; fwd 3 (if port = 1 then forward out port 3)



More Composition: 
Routing & Monitoring
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Route on 
dest prefix

Monitor on 
source IP

router =  
dstip = 1.2.* ; fwd 1

+ dstip = 3.4.* ; fwd 2

monitor =
srcip = 5.6.7.8 ; bucket b1

+ srcip = 5.6.7.9 ; bucket b2

app =  monitor + router



Goal:  Spread client traffic over server replicas
Setup:  Advertise public IP address for the service

First:  Split traffic on client IP & rewrite the server IP address
Then:  Route to the replica

Server Load Balancing

clients

1.2.3.4

load balancer

server replicas

10.0.0.1

10.0.0.2

10.0.0.3



Sequential Composition
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Forward to
Replica

Select
Replica

forwarder =
dstip = 10.0.0.1; fwd 1 

+ 
dstip = 10.0.0.0; fwd 2

selector =
srcip = 0* /\ dstip=1.2.3.4;

dstip <- 10.0.0.1
+ 

srcip = 1* /\ dstip=1.2.3.4; 
dstip <- 10.0.0.2

lb =  selector ; forwarder



Summary So Far
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predicates:
q ::=  f = pattern

| true
| false
| q1 /\ q2 
| q1 \/ q2 
| ~q

simple actions:
a ::=  fwd n

| f <- v
| bucket b

network policies:
p ::= a (action)

| q (filter)
| p1 + p2 (parallel comp.)
| p1 ; p2 (sequential comp.)

abbreviations:
if q then p1 else p2 == (q; p1) + (~q; p2)

id     == true
drop == false 
fwd p == port <- p



Equational Theory
A sign of a well-conceived language == a simple equational theory
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P (+ drop unit)

P ; (Q ; R) (; associative)

P (; id left unit)
P (; id right unit)

drop (; drop left zero)
drop (; drop right zero)

(P ; Q) ; R

id ; P
P ; id

drop ; P
P ; drop

==

==
==

==
==

if q then (P ; R) else (Q ; R) (if commutes ;)(if q then P else Q) ; R ==

Q + P (+ commutative)P + Q ==
P + (Q + R) (+ associative)(P + Q) + R ==

P + drop ==



A Simple Use Case
(Modular Reasoning)
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firewall =
if srcip = 1.1.1.1 then

drop
else

id

router = ...

app = firewall ; router

app == firewall ; router
== (if srcip = 1.1.1.1 then drop else id) ; router
== if srcip = 1.1.1.1 then (drop ; router) else (id ; router)
== if srcip = 1.1.1.1 then drop else (id ; router)

== if srcip = 1.1.1.1 then drop else router



But what if we want to reason about 
entire networks?

A B

H1 H2

1 2 1 2

polA = ...
polB = ...
pol = switch=A; polA +

switch=B; polB

Are all SSH packets dropped at some point along their path?

Do all non-SSH packets sent from H1 arrive at H2?

Are the optimized policies equivalent to the unoptimized one?

pol pol?



Encoding Topologies

A B

H1 H2

1 2 1 2

t =
(sw = A /\ pt = 2; sw <- B; pt <- 1)

+ 
(sw = B /\ pt = 1; sw <- A; pt <- 2) 

net = pol; t; pol

pol polt



Encoding Topologies

H1 H2

t = ...

net =
ac; t; ac; t; ac; t; ac; t; ac

+ ac; t; ac; t; ac; t; ac; t; ac; t; ac; ...
+ ...

A B

net = (pol; t)*; pol
Kleene iteration:
p* = id + p + p;p + ...



Encoding Networks

A B

H1 H2

1 2 1 2

pol  = ...
t     = ...
net = (pol; t)*; pol

net is a function that moves packets:
A1 ==> B2
B2 ==> A1

and also moves packets:
A1 ==> A2
A2 ==> A1
B1 ==> B2
B2 ==> B1

edge = sw=A & pt=1 
|| sw=B & pt=2

net = edge; (ac; t)*; ac; edge



Summary So Far

in; (policy; topology)*; policy; out

a, b, c ::= 
drop // drop all packets

| id // accept all packets
| f = v // field f matches v
| ~a // negation
| a & b // conjunction
| a || b // disjunction

p, q, r ::= 
a // filter according to a

| f <- v // update field f to v 
| p ; q // do p then q
| p + q // do p and q in parallel
| p* // do p zero or more times

Predicates

Network Encoding

Policies



Summary So Far

in; (policy; topology)*; policy; out

a, b, c ::= 
drop // drop all packets

| id // accept all packets
| f = v // field f matches v
| ~a // negation
| a & b // conjunction
| a || b // disjunction

p, q, r ::= 
a // filter according to a

| f <- v // update field f to v 
| p ; q // do p then q
| p + q // do p and q in parallel
| p* // do p zero or more times

Predicates

Network Encoding

Policies

Boolean 
Algebra

Kleene Algebra

Boolean Algebra + Kleene Algebra
= Kleene Algebra with Tests



Equational Theory
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net1  ≈ net2

For programmers:
– a system for reasoning about programs as they are written

For compiler writers:
– a means to prove their transformations correct

For verifiers:
– sound and complete with a PSPACE decision procedure
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Boolean Algebra: a & b  ≈ b & a a & ~a  ≈ drop ...

Kleene Algebra: (a; b); c  ≈ a; (b; c) a; (b + c)  ≈ (a; b) + (a; c)

...
p*  ≈ id + p; p*

Packet Algebra: f <- n; f = n  ≈  f <- n f = n; f <- n ≈  f = n

f <- n; f <- m  ≈  f <- m

a || ~a  ≈ id

if m ≠ n: f = n; f = m ≈  drop

f <- n; g <- m  ≈  g <- m; f <- nif f ≠ g: f = n; g <- m  ≈  g <- m; f = n

f = 0 + ... + f = n  ≈ id    (finite set of possible values in f) 

Equational Theory



Using the Theory

A B

H2

1 2 1 2
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forward = (dst = H1; pt <- 1) 
+ (dst = H2; pt <- 2)

ac = ~(typ = SSH); forward

t = ...

edge = ...

net = edge; (ac; t)*; ac; edge

Are all SSH packets dropped?

~typ = SSH; sw=A; pt=1; net
≈ 
~typ = SSH; sw=A; pt=1; sw <- B; pt <- 2

Do all non-SSH packets sent from H1 arrive at H2?

typ = SSH; net  ≈ drop  

H1



Using the Theory
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A B

H1 H2

1 2 1 2

forward = (dst = H1; pt <- 1) 
+ (dst = H2; pt <- 2)

ac = ~(typ = SSH); forward

t = ...

edge = ...

net = edge; (ac; t)*; ac; edge

Are all SSH packets dropped?

~typ = SSH; dst = H2; sw=A; pt=1; net
≈ 
~typ = SSH; dst = H2; sw=A; pt=1; sw <- B; pt <- 2

Do all non-SSH packets destined for H2,
sent from H1 arrive at H2?

typ = SSH; net  ≈ drop  



Traffic Isolation
A B

H1 H21 2 1 2

H4

3

H3

3

polA1 = sw = A; (  
pt = 1; pt <- 2  +   
pt = 2; pt <- 1  )

polB1 = sw = B; ( ... )

pol1 = polA1 + polB1

net1 = (pol1; t)* 

polA2 = sw = B; (  
pt = 3; pt <- 2  +   
pt = 1; pt <- 3  ) 

polB2 = sw = A; ( ... )

pol2 = polA2 + polB2

net2 = (pol2; t)*

Programmer 1 connects H1 and H2: Programmer 2 connects H3 and H4:

net3 = ((pol1 + pol2); t)*     // traffic from H2 goes to H1 and H4!



Traffic Isolation
A B

H1 H21 2 1 2

H4

3

H3

3

A network slice is a light-weight abstraction designed for traffic isolation:

{ in } policy { out }

traffic outside the slice
satisfying in enters the slice

traffic inside the slice
satisfying out exits the slice

traffic inside the slice obeys the policy

slices are just a little 
syntactic sugar
on top of NetKAT



Traffic Isolation
A B

H1 H21 2 1 2

H4

3

H3

3

A network slice is a light-weight abstraction designed for traffic isolation:

Theorem:  edge1; (slice1; t)* ≈ edge1; ((slice1 + slice2); t)*    

consider those packets at the
edge1 of the slice

can’t tell the difference between
slice1 alone and slice1 + slice2 

edge1 = sw = A /\ pt = 1 \/ sw = B /\ pt = 2

slice1 = {edge1} pol1 {edge1}

edge2 = sw = A /\ pt = 3 \/ sw = B /\ pt = 3

slice2 = {edge2} pol2 {edge2}



NetKAT can be implemented with OpenFlow
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forward = 
(dst = H1; pt <- 1) 

+ (dst = H2; pt <- 2)

ac = 
~(typ = SSH); forward

Pattern Actions

typ = SSH drop

dst=H1 fwd 1

dst=H2 fwd 2

Pattern Actions

typ = SSH drop

dst=H1 fwd 1

dst=H2 fwd 2

Flow Table for Switch 1:

Flow Table for Switch 2:

compile

Theorem:  Any NetKAT policy p that does not modify the switch field can be 
compiled in to an equivalent policy in “OpenFlow Normal Form.”    



Moving Forward

Multiple implementations:
– In OCaml:
• Nate Foster, Arjun Guha, Mark Reitblatt, and others!
• https://github.com/frenetic-lang/frenetic

See www.frenetic-lang.org
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Concern
Assembly Languages Programming Languages

x86 NOX ML Frenetic

Resource 
Management

Move values 
to/from register

Declare/use 
variables

Modularity
Unregulated 

calling 
conventions

Calling conventions 
managed 

automatically

Consistency Inconsistent 
memory model

Consistent (?) 
memory model

Portability Hardware 
dependent

Hardware 
independent



Concern
Assembly Languages Programming Languages

x86 NOX Java/ML Frenetic

Resource 
Management

Move values 
to/from register

(Un)Install policy
rule-by-rule

Declare/use 
variables Declare network policy

Modularity
Unregulated 

calling 
conventions

Unregulated use 
of network flow 

space

Calling conventions 
managed 

automatically

Flow space managed 
automatically

Consistency Inconsistent 
memory model

Inconsistent
global policies

Consistent (?) 
memory model

Consistent global 
policies

Portability Hardware 
dependent

Hardware 
dependent

Hardware 
independent Hardware Independent



Summary
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