
The Frenetic Project:
Adventures in Functional Networking

David Walker
COS 326

Princeton University

Course Themes
• Functional vs. imperative programming

– a new way to think about the algorithms you write

• Modularity
• Abstraction
• Parallelism
• Equational reasoning

2

Course Themes
• Functional vs. imperative programming

– a new way to think about the algorithms you write

• Modularity
• Abstraction
• Parallelism
• Equational reasoning

Useful on a day-to-day basis and in research to transform the
way people think about solving programming problems.

3

Cornell:
– Faculty: Nate Foster, Dexter Kozen, Gun Sirer
– Students & Post Docs: Carolyn Anderson, Shrutarshi Basu, Mark Reitblatt, Robert

Soule, Alec Story (graduated)

Princeton:
– Faculty: Jen Rexford, Dave Walker
– Students & Post Docs: Ryan Beckett, Jennifer Gossels, Rob Harrison (graduated), Xin

Jin, Naga Katta, Chris Monsanto, Srinivas Narayana, Josh Reich, Cole Schlesinger

UMass:
– Faculty: Arjun Guha

http://frenetic-lang.org

5

Dave:
Hey Jen, what's networking?

Jen:
Oooh, it's super-awesome.
No lambda calculus required!

A Quick Story Circa 2009
@ Princeton

Nate:
Too bad about the lambda calculus.
But fill us in.

What is Networking?

end-hosts need
to communicate

6

What is Networking?

Ethernet switches
connect them

7

What is Networking?

which decide how packets
should be forwarded

Control Plane

8

What is Networking?

and actually forward them

Data Plane

9

10

Nate:
Sounds simple enough. Is that it?

Jen:
There's a little more …
Still no lambda calculus though.

A Quick Story Circa 2009
@ Princeton

Dave:
Darn.

What is Networking?
add servers ...
connected by routers

11

What is Networking?

different control planes
12

plug-and-play

structured and
optimized

add servers ...
connected by routers

w/ similar data planes

What is Networking?

13

add servers ...
connected by routers

What is Networking?

we need gateway to
bridge them

14

What is Networking?

and load balancing
for servers

15

What is Networking?

there are other ISPs

16

What is Networking?

requiring
inter-domain routers

17

What is Networking?

and a firewall to handle
malicious traffic

18

What is Networking?

and mobile endpoints

19

What is Networking?

requiring wireless
basestations

20

What is Networking?

and more middleboxes for
billing, lawful intercept, DPI

21

22

Dave:
??? Lambda calculus is easier.

Jen:
:-) Big mess, eh?

… but there is a new way to do things …

A Quick Story Circa 2009
@ Princeton

This is a Control Plane Issue
each color represents a

different set of control-plane
protocols and algorithms

23

The Data Planes are Similar

24

decouple control and data planes
by providing open standard API

Software Defined Networks

25

Centralize Control

Controller Platform

26

Controller Application

OpenFlow

OpenFlow Data Plane Abstraction

Pattern Action Priority Counters
srcip = 1.2.*,
dstip = 3.4.5.*

drop 1 76

srcip = *.*.*.*
dstip = 3.4.5.*

fwd 2 2 13

srcip = *.*.*.*
dstip = *.*.*.*

controller 3 22

Operations:
– Install rule
– Uninstall rule
– Ask for counter values

The Payoff:
– Simplicity
– Generality

OpenFlow

28

Events up:
• Topology changes
• Traffic statistics
• Unprocessed arriving packets

Commands down:
• Install rule
• Uninstall rule
• Query statistics
• Send packets

Controller Platform

Controller Application

Data Plane

The Payoff

Simple, open interface:
– Easy to learn: Even I can do it!

– Enables rapid innovation by academics and industry

– Everything in the data center can be optimized
• The network no longer "gets in the way”

– Commoditize the hardware

29

Huge Momentum in Industry

Bought for $1.2 x 109

(mostly cash)
30

Entire backbone

runs OpenFlow

31

Dave:
Cool. Let's get this party started.

Jen:
So … SDN is a big deal.

A Quick Story Circa 2009
@ Princeton

The PL Perspective:

32

Controller Platform

Controller Application

A new piece of our critical infrastructure is now available
for programming

A new kind of
heterogeneous
distributed
system

multi-component
applications:
• modularity
• composition
• abstraction
• information hiding

simple, clean, narrow
interface:
• a new assembly

language
• … needing

domain-specific
abstractionsresource constraints:

• optimization problems

shared/used by
multiple entities
• security

24-7 availability:
• correct-by-construction

abstractions
• defect detection
• verification
• testing
• fault tolerance

33

www.frenetic-lang.org

A DSL for modular network configuration [ICFP 11, POPL 12, NSDI 13, POPL 14, NSDI 15]

The Biggest Problem: Modularity

34

Controller Platform

LBRouteMonitor FW

We still need all the functionality of old networks:
The only way to engineer it is through modular design.

9

Repeater
Module

Controller Application

inport =1 → fwd 2
inport =2 → fwd 1

1 2

Monitoring
Module

Query web traffic:
inport = 1, dstport = 80 ?

P installed

Bottom Line: It doesn’t work:
• repeater rules are too coarse-grained for desired monitoring
• installing new monitoring rules will clobber the repeater actions

OpenFlow is Anti-Modular

Anti-Modularity: A Closer Look

def switch_join(switch):
repeater(switch)

def repeater(switch):
pat1 = {in_port:1}
pat2 = {in_port:2}
install(switch,pat1,DEFAULT,None,[output(2)])
install(switch,pat2,DEFAULT,None,[output(1)])

def monitor(switch):
pat = {in_port:2,tp_src:80}
install(switch, pat, DEFAULT, None, [])
query_stats(switch, pat)

def stats_in(switch, xid, pattern, packets, bytes):
print bytes
sleep(30)
query_stats(switch, pattern)

Repeater

Web Monitor

def switch_join(switch)
repeater_monitor(switch)

def repeater_monitor(switch):
pat1 = {in_port:1}
pat2 = {in_port:2}
pat2web = {in_port:2, tp_src:80}
Install(switch, pat1, DEFAULT, None, [output(2)])
install(switch, pat2web, HIGH, None, [output(1)])
install(switch, pat2, DEFAULT, None, [output(1)])
query_stats(switch, pat2web)

def stats_in(switch, xid, pattern, packets, bytes):
print bytes
sleep(30)
query_stats(switch, pattern)

Repeater/Monitor

blue = from repeater
red = from web monitor
green = from neither

10

OpenFlow is Anti-Modular

You can’t (easily and reliably) compose:
– a billing service with a repeater
– a firewall with a switch
– a load balancer with a router
– one broadcast service with another
– policy for one data center client with another

37

Solution: Functional Programming!

Controller Platform

RouteMonitorFW

Stop thinking imperatively:
• Don’t program with update/delete commands for concrete rules

And lift the level of abstraction:
• Use pure functions as data structures to describe network policy
• Provide primitives to build complex policies from simple ones
• Let a compiler and run-time do rule synthesis & installation

Compiler & Run Time
linguistic
interface

; +

operators for policy
composition

Frenetic Architecture

39

Receive
Event

Process
Event

Network-wide
Policy

Generate
Policy

Compile
Policy

Messages
to SwitchesTopology

Change /
Network Stat /

Packet In

controller
platform +
run time

frenetic
application
program

Rather than managing (un)installation of concrete rules, programmers specify
what a network does using pure functions.

implements f

f : located_packet → located_packet set

location = (switch, port)

packet

controller

count?
bytes?

location = bucket b

packet contents?

Frenetic Policy Language
[Phase 1]

Rather than managing (un)installation of concrete rules, programmers specify
what a network does using pure functions.

f : located_packet → located_packet set

network execution

Frenetic Policy Language
[Phase 1]

f f ftopo topo

Firewalls: The Simplest Policies

false drops all packets fun p -> { }

true admits all packets fun p -> { p }

Policy Explanation Function

srcIP=10.0.0.1 admits packets with srcIP = 10.0.0.1
drops others

fun p ->
if p.srcIP = 10.0.0.1 then

{ p }
else

{ }

q1 /\ q2,
q1 \/ q2,
~q

admits packets satisfying
q1 /\ q2,
q1 \/ q2,
~q

fun p -> (q1 p) U (q2 p)

fun p -> (q1 p) Π (q2 p)

fun p ->
match (q1 p) with

| { } -> { p }
| _ -> { }

Firewalls: The Simplest Policies

Example: Block all packets from source IP 10.0.0.1 and 10.0.0.2
and except those for web servers

Solution: ~(srcIP=10.0.0.1 /\ srcIP=10.0.0.2) \/ tcp_src_port = 80

web traffic sent here

Firewalls: The Simplest Policies

Example: Allow traffic coming in to switches A, port 1 and
switch B, port 2 to enter our network. Block others.

Solution: (switch=A /\ inport=1) \/ (switch=B & inport=2)

Moving Packets from Place to Place

45

A
1 3

2

fwd 2

Policy Explanation Function

forward all packets out port 2 fun p -> { p[port:= 2] }

Combining Policies

46

A
1 3

2

port=1; fwd 2

Policy Explanation

Function

only consider packets with port = 1
then
forward all such packets out port 2

let filter_port x p = if p.port = x then { p } else { } in
let fwd x p = p.port <- x in
(filter_port 1) <> (fwd 2)

where:
a <> b = fun packet ->

let s = a packet in
Set.Union (Set.map b s)

Multiple Flows

47

A
1 3

2

(port=1; fwd 2) +
(port=2; fwd 3)

Policy Explanation

Function

(filter_port 1 <> fwd 2) +
(filter_port 2 <> fwd 3)

where:
(+) a b = fun packet ->

Set.Union
{(a packet),
(b packet)}

(if port = 1 then forward out port 2) and also
(if port = 1 then forward out port 2)

Composing Policies

48

A B
1 1 33

2 2

(switch = A; policyA) +
(switch = B; policyB)

Policy Explanation

(if switch=A then policyA) and also
(if port = 1 then policyB)

let policyA =
(port=1; fwd 2) +
(port=2; fwd 3)

(if port = 1 then forward out port 2) and also
(if port = 1 then forward out port 3)

let policyB =
port=2; fwd 3 (if port = 1 then forward out port 3)

More Composition:
Routing & Monitoring

49

Route on
dest prefix

Monitor on
source IP

router =
dstip = 1.2.* ; fwd 1

+ dstip = 3.4.* ; fwd 2

monitor =
srcip = 5.6.7.8 ; bucket b1

+ srcip = 5.6.7.9 ; bucket b2

app = monitor + router

Goal: Spread client traffic over server replicas
Setup: Advertise public IP address for the service

First: Split traffic on client IP & rewrite the server IP address
Then: Route to the replica

Server Load Balancing

clients

1.2.3.4

load balancer

server replicas

10.0.0.1

10.0.0.2

10.0.0.3

Sequential Composition

51

Forward to
Replica

Select
Replica

forwarder =
dstip = 10.0.0.1; fwd 1

+
dstip = 10.0.0.0; fwd 2

selector =
srcip = 0* /\ dstip=1.2.3.4;

dstip <- 10.0.0.1
+

srcip = 1* /\ dstip=1.2.3.4;
dstip <- 10.0.0.2

lb = selector ; forwarder

Summary So Far

52

predicates:
q ::= f = pattern

| true
| false
| q1 /\ q2
| q1 \/ q2
| ~q

simple actions:
a ::= fwd n

| f <- v
| bucket b

network policies:
p ::= a (action)

| q (filter)
| p1 + p2 (parallel comp.)
| p1 ; p2 (sequential comp.)

abbreviations:
if q then p1 else p2 == (q; p1) + (~q; p2)

id == true
drop == false
fwd p == port <- p

Equational Theory
A sign of a well-conceived language == a simple equational theory

53

P (+ drop unit)

P ; (Q ; R) (; associative)

P (; id left unit)
P (; id right unit)

drop (; drop left zero)
drop (; drop right zero)

(P ; Q) ; R

id ; P
P ; id

drop ; P
P ; drop

==

==
==

==
==

if q then (P ; R) else (Q ; R) (if commutes ;)(if q then P else Q) ; R ==

Q + P (+ commutative)P + Q ==
P + (Q + R) (+ associative)(P + Q) + R ==

P + drop ==

A Simple Use Case
(Modular Reasoning)

54

firewall =
if srcip = 1.1.1.1 then

drop
else

id

router = ...

app = firewall ; router

app == firewall ; router
== (if srcip = 1.1.1.1 then drop else id) ; router
== if srcip = 1.1.1.1 then (drop ; router) else (id ; router)
== if srcip = 1.1.1.1 then drop else (id ; router)

== if srcip = 1.1.1.1 then drop else router

But what if we want to reason about
entire networks?

A B

H1 H2

1 2 1 2

polA = ...
polB = ...
pol = switch=A; polA +

switch=B; polB

Are all SSH packets dropped at some point along their path?

Do all non-SSH packets sent from H1 arrive at H2?

Are the optimized policies equivalent to the unoptimized one?

pol pol?

Encoding Topologies

A B

H1 H2

1 2 1 2

t =
(sw = A /\ pt = 2; sw <- B; pt <- 1)

+
(sw = B /\ pt = 1; sw <- A; pt <- 2)

net = pol; t; pol

pol polt

Encoding Topologies

H1 H2

t = ...

net =
ac; t; ac; t; ac; t; ac; t; ac

+ ac; t; ac; t; ac; t; ac; t; ac; t; ac; ...
+ ...

A B

net = (pol; t)*; pol
Kleene iteration:
p* = id + p + p;p + ...

Encoding Networks

A B

H1 H2

1 2 1 2

pol = ...
t = ...
net = (pol; t)*; pol

net is a function that moves packets:
A1 ==> B2
B2 ==> A1

and also moves packets:
A1 ==> A2
A2 ==> A1
B1 ==> B2
B2 ==> B1

edge = sw=A & pt=1
|| sw=B & pt=2

net = edge; (ac; t)*; ac; edge

Summary So Far

in; (policy; topology)*; policy; out

a, b, c ::=
drop // drop all packets

| id // accept all packets
| f = v // field f matches v
| ~a // negation
| a & b // conjunction
| a || b // disjunction

p, q, r ::=
a // filter according to a

| f <- v // update field f to v
| p ; q // do p then q
| p + q // do p and q in parallel
| p* // do p zero or more times

Predicates

Network Encoding

Policies

Summary So Far

in; (policy; topology)*; policy; out

a, b, c ::=
drop // drop all packets

| id // accept all packets
| f = v // field f matches v
| ~a // negation
| a & b // conjunction
| a || b // disjunction

p, q, r ::=
a // filter according to a

| f <- v // update field f to v
| p ; q // do p then q
| p + q // do p and q in parallel
| p* // do p zero or more times

Predicates

Network Encoding

Policies

Boolean
Algebra

Kleene Algebra

Boolean Algebra + Kleene Algebra
= Kleene Algebra with Tests

Equational Theory

61

net1 ≈ net2

For programmers:
– a system for reasoning about programs as they are written

For compiler writers:
– a means to prove their transformations correct

For verifiers:
– sound and complete with a PSPACE decision procedure

62

Boolean Algebra: a & b ≈ b & a a & ~a ≈ drop ...

Kleene Algebra: (a; b); c ≈ a; (b; c) a; (b + c) ≈ (a; b) + (a; c)

...
p* ≈ id + p; p*

Packet Algebra: f <- n; f = n ≈ f <- n f = n; f <- n ≈ f = n

f <- n; f <- m ≈ f <- m

a || ~a ≈ id

if m ≠ n: f = n; f = m ≈ drop

f <- n; g <- m ≈ g <- m; f <- nif f ≠ g: f = n; g <- m ≈ g <- m; f = n

f = 0 + ... + f = n ≈ id (finite set of possible values in f)

Equational Theory

Using the Theory

A B

H2

1 2 1 2

63

forward = (dst = H1; pt <- 1)
+ (dst = H2; pt <- 2)

ac = ~(typ = SSH); forward

t = ...

edge = ...

net = edge; (ac; t)*; ac; edge

Are all SSH packets dropped?

~typ = SSH; sw=A; pt=1; net
≈
~typ = SSH; sw=A; pt=1; sw <- B; pt <- 2

Do all non-SSH packets sent from H1 arrive at H2?

typ = SSH; net ≈ drop

H1

Using the Theory

64

A B

H1 H2

1 2 1 2

forward = (dst = H1; pt <- 1)
+ (dst = H2; pt <- 2)

ac = ~(typ = SSH); forward

t = ...

edge = ...

net = edge; (ac; t)*; ac; edge

Are all SSH packets dropped?

~typ = SSH; dst = H2; sw=A; pt=1; net
≈
~typ = SSH; dst = H2; sw=A; pt=1; sw <- B; pt <- 2

Do all non-SSH packets destined for H2,
sent from H1 arrive at H2?

typ = SSH; net ≈ drop

Traffic Isolation
A B

H1 H21 2 1 2

H4

3

H3

3

polA1 = sw = A; (
pt = 1; pt <- 2 +
pt = 2; pt <- 1)

polB1 = sw = B; (...)

pol1 = polA1 + polB1

net1 = (pol1; t)*

polA2 = sw = B; (
pt = 3; pt <- 2 +
pt = 1; pt <- 3)

polB2 = sw = A; (...)

pol2 = polA2 + polB2

net2 = (pol2; t)*

Programmer 1 connects H1 and H2: Programmer 2 connects H3 and H4:

net3 = ((pol1 + pol2); t)* // traffic from H2 goes to H1 and H4!

Traffic Isolation
A B

H1 H21 2 1 2

H4

3

H3

3

A network slice is a light-weight abstraction designed for traffic isolation:

{ in } policy { out }

traffic outside the slice
satisfying in enters the slice

traffic inside the slice
satisfying out exits the slice

traffic inside the slice obeys the policy

slices are just a little
syntactic sugar
on top of NetKAT

Traffic Isolation
A B

H1 H21 2 1 2

H4

3

H3

3

A network slice is a light-weight abstraction designed for traffic isolation:

Theorem: edge1; (slice1; t)* ≈ edge1; ((slice1 + slice2); t)*

consider those packets at the
edge1 of the slice

can’t tell the difference between
slice1 alone and slice1 + slice2

edge1 = sw = A /\ pt = 1 \/ sw = B /\ pt = 2

slice1 = {edge1} pol1 {edge1}

edge2 = sw = A /\ pt = 3 \/ sw = B /\ pt = 3

slice2 = {edge2} pol2 {edge2}

NetKAT can be implemented with OpenFlow

69

forward =
(dst = H1; pt <- 1)

+ (dst = H2; pt <- 2)

ac =
~(typ = SSH); forward

Pattern Actions

typ = SSH drop

dst=H1 fwd 1

dst=H2 fwd 2

Pattern Actions

typ = SSH drop

dst=H1 fwd 1

dst=H2 fwd 2

Flow Table for Switch 1:

Flow Table for Switch 2:

compile

Theorem: Any NetKAT policy p that does not modify the switch field can be
compiled in to an equivalent policy in “OpenFlow Normal Form.”

Moving Forward

Multiple implementations:
– In OCaml:
• Nate Foster, Arjun Guha, Mark Reitblatt, and others!
• https://github.com/frenetic-lang/frenetic

See www.frenetic-lang.org

70

Concern
Assembly Languages Programming Languages

x86 NOX ML Frenetic

Resource
Management

Move values
to/from register

Declare/use
variables

Modularity
Unregulated

calling
conventions

Calling conventions
managed

automatically

Consistency Inconsistent
memory model

Consistent (?)
memory model

Portability Hardware
dependent

Hardware
independent

Concern
Assembly Languages Programming Languages

x86 NOX Java/ML Frenetic

Resource
Management

Move values
to/from register

(Un)Install policy
rule-by-rule

Declare/use
variables Declare network policy

Modularity
Unregulated

calling
conventions

Unregulated use
of network flow

space

Calling conventions
managed

automatically

Flow space managed
automatically

Consistency Inconsistent
memory model

Inconsistent
global policies

Consistent (?)
memory model

Consistent global
policies

Portability Hardware
dependent

Hardware
dependent

Hardware
independent Hardware Independent

Summary

73

