
Parallelism 2

COS 326
David Walker

Princeton University

Last Time
Parallel complexity can be described in terms of work and span

Parallel programming interfaces:
• Futures

– future and force
• Parallel collection interfaces (eg: sequences)

– tabulate
– map
– filter
– reduce

Implementations: Google map-reduce; Hadoop

Key idea: Parallel functional libraries have sequential semantics

PARALLEL SCAN AND PREFIX SUM

The prefix-sum problem

input 6 4 16 10 16 14 2 8

76

Sum of Sequence:

input

output

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

output

Prefix-Sum of Sequence:

The prefix-sum problem

val prefix_sum : int seq -> int seq

input

output

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

The simple sequential algorithm: accumulate the sum from left to right

– Sequential algorithm: Work: O(n), Span: O(n)
– Goal: a parallel algorithm with Work: O(n), Span: O(log n)

Parallel prefix-sum

The trick: Use two passes
– Each pass has O(n) work and O(log n) span

– So in total there is O(n) work and O(log n) span

First pass builds a tree of sums bottom-up
– the “up” pass

Second pass traverses the tree top-down to compute prefixes
– the “down” pass computes the "from-left-of-me" sum

Historical note:

– Original algorithm due to R. Ladner and M. Fischer, 1977

6

Example

input

output

6 4 16 10 16 14 2 8

range 0,8
sum
fromleft

range 0,4
sum
fromleft

range 4,8
sum
fromleft

range 6,8
sum
fromleft

range 4,6
sum
fromleft

range 2,4
sum
fromleft

range 0,2
sum
fromleft

r 0,1
s
f

r 1,2
s
f

r 2,3
s
f

r 3,4
s
f

r 4,5
s
f

r 5,6
s
f

r 6,7
s
f

r 7,8
s
f

6 4 16 10 16 14 2 8

10 26 30 10

36 40

76

input

output

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

range 0,8
sum
fromleft

range 0,4
sum
fromleft

range 4,8
sum
fromleft

range 6,8
sum
fromleft

range 4,6
sum
fromleft

range 2,4
sum
fromleft

range 0,2
sum
fromleft

r 0,1
s
f

r 1,2
s
f

r 2,3
s
f

r 3,4
s
f

r 4,5
s
f

r 5,6
s
f

r 6,7
s
f

r 7,8
s
f

6 4 16 10 16 14 2 8

10 26 30 10

36 40

76
0

0

0

0

36

10 36 666 26 52 68

10 66

36

Example

The algorithm, pass 1
1. Up: Build a binary tree where
– Root has sum of the range [x,y)
– If a node has sum of [lo,hi) and hi>lo,

• Left child has sum of [lo,middle)
• Right child has sum of [middle,hi)
• A leaf has sum of [i,i+1), i.e., nth input i

This is an easy parallel divide-and-conquer algorithm: “combine”
results by actually building a binary tree with all the range-sums
– Tree built bottom-up in parallel

Analysis: O(n) work, O(log n) span

The algorithm, pass 2
2. Down: Pass down a value fromLeft
– Root given a fromLeft of 0
– Node takes its fromLeft value and

• Passes its left child the same fromLeft
• Passes its right child its fromLeft plus its left child’s sum

– as stored in part 1
– At the leaf for sequence position i,

• nth output i == fromLeft + nth input i

This is an easy parallel divide-and-conquer algorithm:
traverse the tree built in step 1 and produce no result
– Leaves create output
– Invariant: fromLeft is sum of elements left of the node’s range

Analysis: O(n) work, O(log n) span

Sequential cut-off
For performance, we need a sequential cut-off:

• Up:
– just a sum, have leaf node hold the sum of a range

• Down:
– do a sequential scan

Parallel prefix, generalized
Just as map and reduce are the simplest examples of a common

pattern, prefix-sum illustrates a pattern that arises in many, many
problems

• Minimum, maximum of all elements to the left of i

• Is there an element to the left of i satisfying some property?

• Count of elements to the left of i satisfying some property
– This last one is perfect for an efficient parallel filter …
– Perfect for building on top of the “parallel prefix trick”

Parallel Scan

pre_scan (o) base <x1, ..., xn>
==

<base, base o x1, ..., base o x1 o ... o xn-1>

scan (o) <x1, ..., xn>
==

<x1, x1 o x2, ..., x1 o ... o xn>

sequence with o applied to all items
to the left of index in input

like a fold, except return
the folded prefix at each step

Parallel Filter

Given a sequence input, produce a sequence output containing only
elements v such that (f v) is true

Example: let f x = x > 10

filter f <17, 4, 6, 8, 11, 5, 13, 19, 0, 24>
== <17, 11, 13, 19, 24>

Parallelizable?
– Finding elements for the output is easy
– But getting them in the right place seems hard

Parallel prefix to the rescue

Use parallel map to compute a bit-vector for true elements:

input <17, 4, 6, 8, 11, 5, 13, 19, 0, 24>
bits <1, 0, 0, 0, 1, 0, 1, 1, 0, 1>

Use parallel-prefix sum on the bit-vector:

bitsum <1, 1, 1, 1, 2, 2, 3, 4, 4, 5>

For each i, if bits[i] == 1 then write input[i] to output[bitsum[i]] to produce
the final result:

output <17, 11, 13, 19, 24>

QUICKSORT

Quicksort review

Recall quicksort was sequential, in-place, expected time O(n log n)
Best / expected case work

1. Pick a pivot element O(1)
2. Partition all the data into: O(n)

A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

3. Recursively sort A and C 2T(n/2)

How should we parallelize this?

Quicksort

Best / expected case work
1. Pick a pivot element O(1)
2. Partition all the data into: O(n)

A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

3. Recursively sort A and C 2T(n/2)

Easy: Do the two recursive calls in parallel
• Work: unchanged. Total: O(n log n)
• Span: now T(n) = O(n) + 1T(n/2) = O(n)

Doing better

As with mergesort, we get a O(log n) speed-up with an infinite
number of processors. That is a bit underwhelming

– Sort 109 elements 30 times faster

(Some) Google searches suggest quicksort cannot do better
because the partition cannot be parallelized

– The Internet has been known to be wrong J

– But we need auxiliary storage (no longer in place)

– In practice, constant factors may make it not worth it

Already have everything we need to parallelize the partition…

Parallel partition (not in place)

This is just two filters!
– We know a parallel filter is O(n) work, O(log n) span
– Parallel filter elements less than pivot into left side of aux array
– Parallel filter elements greater than pivot into right size of aux array
– Put pivot between them and recursively sort

With O(log n) span for partition, the total best-case and expected-
case span for quicksort is

T(n) = O(log n) + 1T(n/2) = O(log2 n)

Partition all the data into:
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

Example

Step 1: pick pivot as median of three

8 1 4 9 0 3 5 2 7 6

Steps 2a and 2c (combinable): filter less than, then filter
greater than into a second array

1 4 0 3 5 2

1 4 0 3 5 2 6 8 9 7

Step 3: Two recursive sorts in parallel
– Can copy back into original array (like in mergesort)

More Algorithms
• To add multiprecision numbers.
• To evaluate polynomials
• To solve recurrences.
• To implement radix sort
• To delete marked elements from an array
• To dynamically allocate processors
• To perform lexical analysis. For example, to parse a program

into tokens.
• To search for regular expressions. For example, to implement

the UNIX grep program.
• To implement some tree operations. For example, to find the

depth of every vertex in a tree
• To label components in two dimensional images.

See Guy Blelloch “Prefix Sums and Their Applications”

Summary
• Parallel prefix sums and scans have many applications

– A good algorithm to have in your toolkit!

• Key idea: An algorithm in 2 passes:
– Pass 1: build a "reduce tree" from the bottom up
– Pass 2: compute the prefix top-down, looking at the left-

subchild to help you compute the prefix for the right subchild

F#

COS 326
David Walker

Princeton University
Slide credits: Material drawn from:
https://fsharpforfunandprofit.com/posts/computation-expressions-intro/
https://fsharpforfunandprofit.com/posts/concurrency-async-and-parallel/
https://en.wikibooks.org/wiki/F_Sharp_Programming/Async_Workflows

OCaml --> F#

Don Syme
F#

Xavier Leroy
OCaml

F# Design Goals
Implement a great functional language

– They chose core OCaml

That interoperates with all of the Microsoft software
– ie: allow seemless use of any C# .Net libraries
– this involved integrating .Net objects into OCaml
– this involved some compromises

To avoid too much complexity, throw away some things
– Simple module system

And steal a few good ideas from other functional languages
– eg: monads from Haskell

PS: Scala is similar
Implement a great functional language

That interoperates with all of the Microsoft Java software
– ie: allow seemless use of any C# .Net Java libraries
– this involved integrating .Net Java objects into a functional

language
– this involved some compromises

To avoid too much complexity

And steal a few good ideas from other functional languages
– eg: monads from Haskell, type classes, ...

And then throw in more stuff! https://www.scala-lang.org/

Some References
A great blog on F# programming idioms:

– https://fsharpforfunandprofit.com/
– lots of lessons apply to any functional programming language

A wikibook
– https://en.wikibooks.org/wiki/F_Sharp_Programming
– lots of details and examples
– can help with minor variations in syntax from OCaml

https://fsharpforfunandprofit.com/
https://en.wikibooks.org/wiki/F_Sharp_Programming

F# INSTALL

F# Install
Mac OS

– Follow Option 1 or Option 2:
• https://fsharp.org/use/mac/
• Prof Walker used Option 2: Installed Visual Studio for Mac:

– https://visualstudio.microsoft.com/vs/mac/

Linux
– Follow the instructions for your distribution:

• https://fsharp.org/use/linux/

Windows
– Follow Option 1 or Option 2:

• https://fsharp.org/use/windows/

https://fsharp.org/use/mac/
https://visualstudio.microsoft.com/vs/mac/
https://fsharp.org/use/linux/
https://fsharp.org/use/windows/

Step 1 (Mac/Linux): Get Mono

www.mono-project.com also via homebrew

Step 1 (Mac/Linux): Get Mono

www.mono-project.com also via homebrew

at your terminal:

brew install mono

Step 2 (Mac/Linux): Download Visual Studio

www.visualstudio.com/vs/visual-studio-mac

F# HELLO WORLD

Creating a New Solution in VS
1. File Menu: "New Solution"
2. Choose a template for your new project:

Creating a New Solution in VS
3. Choose a name:

Creating a New Solution in VS
4. Your first file and boiler plate is generated:

DEMO

PARALLEL & CONCURRENT
PROGRAMMING IN F#

Recall Futures

module type FUTURE =
sig
type ‘a future
val future : (‘a->‘b) -> ‘a -> ‘b future
val force : ‘a future -> ‘a

end

let future f x =
let r = ref None
let t = Thread.create (fun _ -> r := Some(f ())) in
let y = g() in

Thread.join t ;
match !r with
| Some v ->
| None -> failwith “impossible”

Recall Futures

module type FUTURE =
sig
type ‘a future
val future : (‘a->‘b) -> ‘a -> ‘b future
val force : ‘a future -> ‘a

end

let future f x =
let r = ref None
let t = Thread.create (fun _ -> r := Some(f ())) in
let y = g() in

Thread.join t ;
match !r with
| Some v ->
| None -> failwith “impossible”

Naive:
• creates a new thread every time, rather than

use a thread pool
• does not handle exceptions
• does not allow for cancellation of futures
• no support for event-driven programming
• and besides, no real parallel execution

F# has a library for asynchronous computations
that will handle many of these issues and more ...

Plus an elegant syntax to boot!

F# Async
Values with type Async<T> are suspended computations
• that may be run in the background, like futures
• or be composed and executed in sequence

– while avoiding blocking
• or executed in parallel

F# Async
Values with type Async<T> are suspended computations
• that may be run in the background, like futures
• or composed and executed in sequence

– while avoiding blocking
• or executed in parallel

A function that returns a suspended computation:

let asyncAdd x y =
async {
return x + y

}

F# Async
Values with type Async<T> are suspended computations
• that may be run in the background, like futures
• or composed and executed in sequence

– while avoiding blocking
• or executed in parallel

A function that returns a suspended computation:

let asyncAdd x y =
async {
return x + y

}

let's the compiler know we are beginning the construction
of a suspended (async) computation with type Async<T>

the code in
here has a
special syntax.
It is called a
computation
expression

F# Async
Values with type Async<T> are suspended computations
• that may be run in the background, like futures
• or composed and executed in sequence

– while avoiding blocking
• or executed in parallel

A function that returns a suspended computation:

let asyncAdd x y =
async {
return x + y

}

"return" is not the same as the "return" keyword in C/Java
think of it as a function with type T -> Async<T>

the simplest
kind of async
is one that
does nothing
but return
a value

Visualizing Asyncs

v1 async { return e1 }

creation

Async<T>
e1

visualization type

Visualizing Asyncs

visualization

v1 async {
let! x = return e1
return e2

}

Async<T>

v2

x

e1

e2

composition type

Async Typing
let! extracts the final value from an async computation:

let! x = e1
...

x has type T
in the following code

e1 has type Async<T>

Async Typing
let! extracts the final value from an async computation:

Compare with typing let:

let! x = e1
...

x has type T
in the following code

let x = e1
...

e1 has type Async<T>

e1 has type Async<T>x has type Async<T>
in the following code

F# Async
Chaining asynchronous computations:

let asyncAdd (x:int) (y:int) : Async<int> =
async {
return x + y

}

let compositeAsync () =
async {

let! z = asyncAdd 1 2
let! w = asyncAdd z 1
printfn "answer: %i" (z + w)
return ()

}

let main () =
compositeAsync()

|> Async.RunSynchronously

let! waits for the
result of asyncAdd
before continuing;
bind an integer
to z

allows other
threads to
continue in the
meantime; doesn't
take up resources

Parallelism

Async.Parallel : seq<Async<T>> -> Async<T []>

converts a sequence of Async computations
into

an Async of an array of results

v1 v2 v3 v3v1 v2

Parallelism

Async.Parallel : seq<Async<T>> -> Async<T []>

converts a sequence of Async computations
into

an Async of an array of results

v1 v2 v3 v3v1 v2

in F#, many
concrete
types can
be viewed
as a sequence:
lists,
arrays,
...
F# uses
objects
more
pervasively
than OCaml

A More Interesting Example

// Fetch the contents of a web page asynchronously
let fetchUrlAsync url =

async {
let req = WebRequest.Create(Uri(url))
let! resp = req.AsyncGetResponse()
let stream = resp.GetResponseStream()
let reader = new IO.StreamReader(stream)
let html = reader.ReadToEnd()
printfn "finished downloading %s" url

}

A More Interesting Example

// Fetch the contents of a web page asynchronously

let fetchUrlAsync url =

async {

let req = WebRequest.Create(Uri(url))

let! resp = req.AsyncGetResponse()

let stream = resp.GetResponseStream()

let reader = new IO.StreamReader(stream)

let html = reader.ReadToEnd()

printfn "finished downloading %s" url

}

Notice that

AsyncGetResponse

returns an Async.

let! causes this

Async to be executed

while the rest of the

computation is

suspended, wasting

no CPU resources

until the response

is returned.

A More Interesting Example

// Fetch the contents of a web page asynchronously

let fetchUrlAsync url =

async {

let req = WebRequest.Create(Uri(url))

let! resp = req.AsyncGetResponse()

let stream = resp.GetResponseStream()

let reader = new IO.StreamReader(stream)

let html = reader.ReadToEnd()

printfn "finished downloading %s" url

}

Notice that

AsyncGetResponse

returns an Async.

let! causes this

Async to be executed

while the rest of the

computation is

suspended, wasting

no CPU resources

until the response

is returned.

Without the special let! syntax,

we would have to program with

continuations, which would be ugly.

We will come back to this.

A More Interesting Example

// Fetch the contents of a web page asynchronously
let fetchUrlAsync (url:string) : Async<string> = ...

let sites = [
"http://www.bing.com";
"http://www.google.com";
"http://www.microsoft.com";
"http://www.amazon.com";
"http://www.yahoo.com”;

]

let runParallel () =
sites

|> List.map fetchUrlAsync // make a list of async tasks
|> Async.Parallel // set up the tasks to run in parallel
|> Async.RunSynchronously // start them off
|> ignore

Background Work
Sequential operation:

Parallel operation:

finished downloading http://www.bing.com
finished downloading http://www.google.com
finished downloading http://www.microsoft.com
finished downloading http://www.amazon.com
finished downloading http://www.yahoo.com
528.371000

finished downloading http://www.microsoft.com
finished downloading http://www.google.com
finished downloading http://www.bing.com
finished downloading http://www.yahoo.com
finished downloading http://www.amazon.com
1365.457700

COMPUTATION EXPRESSIONS

What is this?

A special syntax for a commonly appearing paradigm
– In F#: A computation expression
– In Haskell: A monad

The concurrency monad is but one kind of monad.
There are many others.

async {

...

}

let! x = v
e

Monads

A monad are just abstract data types with a particular interface:

type M<T>

return : T -> M<T>

bind : M<T> -> (T -> M<T>) -> M<T>

monad interface

Monads

A monad are just abstract data types with a particular interface:

type M<T>

return : T -> M<T>

bind : M<T> -> (T -> M<T>) -> M<T>

async {

...

}

"start using
the async
monad now
with its special
syntax"

monad interface

Monads

A monad are just abstract data types with a particular interface:

type M<T>

return : T -> M<T>

bind : M<T> -> (T -> M<T>) -> M<T>

let! x = e1
e2

bind e1 (fun x -> e2)

monad interface

the neat bit about a monad is that
bind does some interesting
"behind the scenes" work for you.
It's a "programmable semi-colon"

translated to

Monads

A monad are just abstract data types with a particular interface:

let! x = v
e bind v (fun x -> e)translated to

let! x1 = f1 a
let! x2 = f2 b
let! x3 = f3 c
let! x4 = f4 d
e

bind (f1 a) (fun x1 ->
bind (f2 b) (fun x2 ->

bind (f3 c) (fun x3 ->
bind (f4 d) (fun x4 -> e)

translated to

prettier

Monads

A monad are just abstract data types with a particular interface:

let! x = v
e

bind v (fun x -> e)
translated to

let! x1 = f1 a
let! x2 = f2 b
let! x3 = f3 c
let! x4 = f4 d
e

bind (f1 a) (fun x1 ->
bind (f2 b) (fun x2 ->

bind (f3 c) (fun x3 ->
bind (f4 d) (fun x4 -> e)

translated to

(note: F# has quite a few more bits of syntax: do!, use!, ...
that may be present in computation expressions, making them
a little more than just pure monads, and even nicer sometimes)

prettier

A Logger

let log p = printfn "expression is %A" p

let loggedWorkflow =
let x = 42

log x
let y = 43

log y
let z = x + y

log z
z

A Logger

let log p = printfn "expression is %A" p

let loggedWorkflow =
let x = 42

log x
let y = 43

log y
let z = x + y

log z
z

expression is 42
expression is 43
expression is 85

output

A Logger

let log p = printfn "expression is %A" p

let loggedWorkflow =
let x = 42

log x
let y = 43

log y
let z = x + y

log z
z

expression is 42
expression is 43
expression is 85

output

lots of
repeated
code

A Logger

type LoggingBuilder() =
let log p = printfn "expression is %A" p

member this.Bind(x, f) =
log x
f x

member this.Return(x) =
x

f# object Bind method

Return method

A Logger
type LoggingBuilder() =

let log p = printfn "expression is %A" p
member this.Bind(x, f) = log x; f x
member this.Return(x) = x

let logger = new LoggingBuilder()

let loggedWorkflow =
logger {
let! x = 42
let! y = 43
let! z = x + y
z
}

expression is 42
expression is 43
expression is 85

output

A Logger
type LoggingBuilder() =

let log p = printfn "expression is %A" p
member this.Bind(x, f) = log x; f x
member this.Return(x) = x

let logger = new LoggingBuilder()

let loggedWorkflow =
logger {
let! x = 42
let! y = 43
let! z = x + y
z
}

expression is 42
expression is 43
expression is 85

output

let x = 42
log x
let y = 43
log y
let z = x + y
log z
z

Another Example

Imagine you are designing a front end for a database that takes
update requests.

– A user submits some data (userid, name, email)
– Check for validity of name, email
– Update user record in database
– If email has changed, send verification email
– Display end result to user

In Pictures

Receive Request

Validate Request

Read user record

Update user record

Send verification email

Show Result

But this is
the

“happy path”
only. What

about failures?

In Pictures

Receive Request

Validate Request

Read user record

Update user record

Send verification email

Show Result

Validation Error!

Not found!

Database error!

SMTP error!

One solution

Receive Request

Validate Request

Read user record

Update user record

Send verification email

Show Result

Raise validation exception

Raise not found exception

Raise database exception

Raise network exception

The trouble with exceptions

People forget to catch them!
– applications fail
– sadness ensues
– See A type-based analysis of uncaught exceptions

• by Pessaux and Leroy.
• Uncaught exceptions: a big problem in OCaml (and Java!)
• (not a big problem in C. Why not? L)

In a more functional approach, the full behavior of a program is
determined exclusively by the value it returns, not by its “effect”

Functional Error Processing

Validate Requestinput
valid output
or
error output

Explicitly return “good” result
or error. If we use OCaml
data types to represent the
two possibilities we will force
the client code to process the
error (or get a warning from
the OCaml type checker).

Functional Error Processing

Validate Requestinput
valid output
or
error output

Notice input and output aren’t the same type.
On the surface, this makes it look awkward to
compose a series of such steps, but:

Good abstractions are compositional ones.

Let’s design a generic library for error processing
that is highly reuseable and compositional.

...

...

...

Functional Error Processing

Validate Requestinput
valid output
or
error output

The Challenge: Composition

Validate Requestinput
valid output
or
error output

Read Request ...

type 'a result =
Success of ‘a

| Failure of string

Validate Request Read RequestSuccess of ‘a
| Failure of string

A generic result type:

A processing pipeline:

Generic Error Processing

Validation Functions

type Result<'a> = Success of 'a | Failure of string
type Request = {name:string; email:string}

let validate1 (input:Request) : input Result =
if input.name = "" then Failure "Name must not be blank"
else Success input

let validate2 (input:Request) : input Result =
if input.name.Length > 50 then Failure "Name must not be > 50 char"
else Success input

let validate3 (input:Request) : input Result =
if input.email = "" then Failure "Email must not be blank"
else Success input

Validation Functions

type Result<'a> = Success of 'a | Failure of string
type Request = {name:string; email:string}

val validate1 : Request -> Request Result
val validate2 : Request -> Request Result
val validate3 : Request -> Request Result

let validationWorkflow input =
match validate input with
| Failure s -> Failure s
| Success i2 ->

match validate2 i2 with
| Failure s -> Failure s
| Success i3 ->

match validate3 i3 with
| Failure s -> Failure s
| Success i4 -> Success i4

Validation Functions

type Result<'a> = Success of 'a | Failure of string
type Request = {name:string; email:string}

val validate1 : Request -> Request Result
val validate2 : Request -> Request Result
val validate3 : Request -> Request Result

let validationWorkflow input =
match validate input with
| Failure s -> Failure s
| Success i2 ->

match validate2 i2 with
| Failure s -> Failure s
| Success i3 ->

match validate3 i3 with
| Failure s -> Failure s
| Success i4 -> Success i4

horrible boilerplate
code

so much repetition

easy to make
mistakes

ugly to read.

You can't pay people
enough money
to read this code
carefully!

Validation Functions

type Result<'a> = Success of 'a | Failure of string
type Request = {name:string; email:string}

val validate1 : Request -> Request Result
val validate2 : Request -> Request Result
val validate3 : Request -> Request Result

let validationWorkflow input =
match validate input with
| Failure s -> Failure s
| Success i2 ->

match validate2 i2 with
| Failure s -> Failure s
| Success i3 ->

match validate3 i3 with
| Failure s -> Failure s
| Success i4 -> Success i4

type FailureBuilder() =

member this.Bind(x, f) =
match x with
| Failure s -> Failure s
| Success a -> f a

member this.Return(x) =
Success x

let failure = new FailureBuilder()

Validation Functions

type Result<'a> = Success of 'a | Failure of string
type Request = {name:string; email:string}

val validate1 : Request -> Request Result
val validate2 : Request -> Request Result
val validate3 : Request -> Request Result

let validationWorkflow input =
match validate1 input with
| Failure s -> Failure s
| Success i2 ->

match validate2 i2 with
| Failure s -> Failure s
| Success i3 ->

match validate3 i3 with
| Failure s -> Failure s
| Success i4 -> Success i4

type FailureBuilder() =

member this.Bind(x, f) =
match x with
| Failure s -> Failure s
| Success a -> f a

member this.Return(x) =
Success x

let failure = new FailureBuilder()

let validationWorkflow input =
let! i2 = validate1 input
let! i3 = validate2 input
let! i4 = validate3 input
return i4

Finally, Async Calls Again

open System.Net
let req1 = HttpWebRequest.Create("http://fsharp.org")
let req2 = HttpWebRequest.Create("http://google.com")
let req3 = HttpWebRequest.Create("http://bing.com")

req1.BeginGetResponse((fun r1 ->
let resp1 = req1.EndGetResponse(r1)
printfn "Downloaded %O" resp1.ResponseUri

req2.BeginGetResponse((fun r2 ->
let resp2 = req2.EndGetResponse(r2)
printfn "Downloaded %O" resp2.ResponseUri

req3.BeginGetResponse((fun r3 ->
let resp3 = req3.EndGetResponse(r3)
printfn "Downloaded %O" resp3.ResponseUri

),null) |> ignore
),null) |> ignore

),null) |> ignore

Finally, Async Calls Again

open System.Net
let req1 = HttpWebRequest.Create("http://fsharp.org")
let req2 = HttpWebRequest.Create("http://google.com")
let req3 = HttpWebRequest.Create("http://bing.com")

req1.BeginGetResponse((fun r1 ->
let resp1 = req1.EndGetResponse(r1)
printfn "Downloaded %O" resp1.ResponseUri

req2.BeginGetResponse((fun r2 ->
let resp2 = req2.EndGetResponse(r2)
printfn "Downloaded %O" resp2.ResponseUri

req3.BeginGetResponse((fun r3 ->
let resp3 = req3.EndGetResponse(r3)
printfn "Downloaded %O" resp3.ResponseUri

),null) |> ignore
),null) |> ignore

),null) |> ignore

Horrible boilerplate.

Lots of continuations (ie callbacks)
inside continuations!

Finally, Async Calls Again

open System.Net
let req1 = HttpWebRequest.Create("http://fsharp.org")
let req2 = HttpWebRequest.Create("http://google.com")
let req3 = HttpWebRequest.Create("http://bing.com")

req1.BeginGetResponse((fun r1 ->
let resp1 = req1.EndGetResponse(r1)
printfn "Downloaded %O" resp1.ResponseUri

req2.BeginGetResponse((fun r2 ->
let resp2 = req2.EndGetResponse(r2)
printfn "Downloaded %O" resp2.ResponseUri

req3.BeginGetResponse((fun r3 ->
let resp3 = req3.EndGetResponse(r3)
printfn "Downloaded %O" resp3.ResponseUri

),null) |> ignore
),null) |> ignore

),null) |> ignore

open System.Net
let req1 = HttpWebRequest.Create("http://fsharp.org")
let req2 = HttpWebRequest.Create("http://google.com")
let req3 = HttpWebRequest.Create("http://bing.com")

async {
let! resp1 = req1.AsyncGetResponse()
printfn "Downloaded %O" resp1.ResponseUri

let! resp2 = req2.AsyncGetResponse()
printfn "Downloaded %O" resp2.ResponseUri

let! resp3 = req3.AsyncGetResponse()
printfn "Downloaded %O" resp3.ResponseUri

} |> Async.RunSynchronously

Monads, Technically

A monad is a (set of values, bind, return) that satisfies these equational laws:

In Haskell, the compiler could actually use such laws to optimize a program (in
theory ... not sure if it does this in practice).

But programmers expect these kinds of laws to be true and may rearrange their
programs with them in mind

bind (return a, f) == f a

bind(m, return) == m

bind(m, (fun x -> bind(k x, h)) == bind (bind(m, k), h)

Monads, Technically

Monads are particularly important in Haskell because:
• functions with type a -> b do not have effects!*
• they are pure!*
• they don't print, or use mutable references!*
• the type system enforces this property*

Haskell does have effectful computations
• they have type IO b

– where IO b is the "IO monad"
– when you run this kind of computation at the top level, effects happen

• lots of Haskell functions have type a -> M b
– they are "pure" functions, that produce a computation

• lots of times in this class, we have said "this equational law only applies when we are
working with pure functions"
– Haskell actually enforces the caveat with its type system!*

Monads, Technically

Monads are particularly important in Haskell because:

• functions with type a -> b do not have effects!*

• they are pure!*

• they don't print, or use mutable references!*

• the type system enforces this property*

Haskell does have effectful computations

• they have type IO b

– where IO b is the "IO monad"

– when you run this kind of computation at the top level, effects happen

• lots of Haskell functions have type a -> M b

– they are "pure" functions, that produce a computation

• lots of times in this class, we have said "this equational law only applies when we are

working with pure functions"

– Haskell actually enforces the caveat with its type system!*

* There is a function called PerformUnsafeIO ... you can guess what it does :-)

But people avoid using it most of the time.

More Computation Expressions(!)

Construct De-sugared Form
let pat = expr in cexpr let pat = expr in cexpr
let! pat = expr in cexpr b.Bind(expr, (fun pat -> cexpr))
return expr b.Return(expr)
return! expr b.ReturnFrom(expr)
yield expr b.Yield(expr)
yield! expr b.YieldFrom(expr)
use pat = expr in cexpr b.Using(expr, (fun pat -> cexpr))
use! pat = expr in cexpr b.Bind(expr, (fun x -> b.Using(x, fun pat -> cexpr))
do! expr in cexpr b.Bind(expr, (fun () -> cexpr))
for pat in expr do cexpr b.For(expr, (fun pat -> cexpr))
while expr do cexpr b.While((fun () -> expr), b.Delay(fun () -> cexpr))
if expr then cexpr1 else cexpr2 if expr then cexpr1 else cexpr2
if expr then cexpr if expr then cexpr else b.Zero()
try cexpr with patn -> cexprn b.TryWith(expr, fun v -> match v with (patn:ext) -> cexprn | _ raise exn)
try cexpr finally expr b.TryFinally(cexpr, (fun () -> expr))

cexpr1
cexpr2 b.Combine(cexpr1, b.Delay(fun () -> cexpr2))

One More Example

let map1 = [("1","One"); ("2","Two")] |> Map.ofList
let map2 = [("A","Alice"); ("B","Bob")] |> Map.ofList
let map3 = [("CA","California"); ("NY","New York")] |> Map.ofList

let multiLookup key =
match map1.TryFind key with
| Some result1 -> Some result1 // success
| None -> // failure

match map2.TryFind key with
| Some result2 -> Some result2 // success
| None -> // failure

match map3.TryFind key with
| Some result3 -> Some result3 // success
| None -> None // failure

One More Example

let map1 = [("1","One"); ("2","Two")] |> Map.ofList
let map2 = [("A","Alice"); ("B","Bob")] |> Map.ofList
let map3 = [("CA","California"); ("NY","New York")] |> Map.ofList

let multiLookup key =
match map1.TryFind key with
| Some result1 -> Some result1 // success
| None -> // failure

match map2.TryFind key with
| Some result2 -> Some result2 // success
| None -> // failure

match map3.TryFind key with
| Some result3 -> Some result3 // success
| None -> None // failure

let multiLookup key =
orElse {
return! map1.TryFind key
return! map2.TryFind key
return! map3.TryFind key
}

type OrElseBuilder() =
member this.ReturnFrom(x) = x
member this.Combine (a,b) =

match a with
| Some _ -> a // a succeeds -- use it
| None -> b // a fails -- use b instead

member this.Delay(f) = f()

let orElse = new OrElseBuilder()

More Monads & Computation Expressions
Monads for:

– parsing elegantly
– transactional software memory (a concurrency paradigm)
– error handling
– imperative state (mutable data)
– database programming
– ...

More computation expressions
– https://fsharpforfunandprofit.com/posts/computation-

expressions-intro/

Assignment #7
• Parallel algorithms in F#

– Async.Parallel

• GO TO PRECEPT THIS WEEK! I THINK IT WILL HELP!
– if you get stuck installing F# over holiday break and did not go to

precept, we will have little pity for you.

• I RARELY USE ALLCAPS ON MY SLIDES

• CONSIDER THIS A HINT

• Before precept, install F# on your laptop

