Mutation

Breaking News
UVE Mutant Alert! New cow-goat [d COS 326

EXCLUSIVE

COM S E e

David Walker

Princeton University

slides copyright 2018 David Walker
permission granted to reuse these slides for non-commercial educational purposes

Reasoning about Mutable State is Hard

mutable set immutable set

insert 1 sl; let s1 = insert 1 s0 in
f x; f x;

member 1 sl member 1 sl

Is memberisl ==true? ..
— When sl is mutable, one must look at f to determine if it
modifies s1.
— Worse, one must often solve the aliasing problem.

— Worse, in a concurrent setting, one must look at every other
function that any other thread may be executing to see if it

modifies s1.

[Thus far...

We have considered the (almost) purely functional subset of OCaml.
— We've had a few side effects: printing & raising exceptions.

Two reasons for this emphasis:

— Reasoning about functional code is easier.
* Both formal reasoning
— equationally, using the substitution model
— and informal reasoning
* Data structures are persistent.

— They don’t change — we build new ones and let the garbage collector
reclaim the unused old ones.

* Hence, any invariant you prove true stays true.
— e.g., 3isa member of set S.

— To convince you that you don’t need side effects for many things where you
previously thought you did.

* Programming with basic immutable data like ints, pairs, lists is easy.
— types do a lot of testing for you!
— do not fear recursion!

* You can implement expressive, highly reuseable functional data structures
like polymorphic 2-3 trees or dictionaries or stacks or queues or sets or
expressions or programming languages with reasonable space and time.3

But alas...

Purely functional code is pointless.
— The whole reason we write code is to have some effect on the world.

— For example, the OCaml top-level loop prints out your result.

* Without that printing (a side effect), how would you know that your functions
computed the right thing?

Some algorithms or data structures need mutable state.

— Hash-tables have (essentially) constant-time access and update.
* The best functional dictionaries have either:
— logarithmic access & logarithmic update
— constant access & linear update
— constant update & linear access
* Don’t forget that we give up something for this:

— we can’t go back and look at previous versions of the dictionary. We can
do that in a functional setting.

— Robinson’s unification algorithm
e A critical part of the OCaml type-inference engine.
* Also used in other kinds of program analyses.

— Depth-first search, more ...

However, purely mostly functional code is amazingly productive

OCAML MUTABLE REFERENCES

References

* Newtype: t ref

— Think of it as a pointer to a box that holds a t value.
— The contents of the box can be read or written.

References

* Newtype: t ref

— Think of it as a pointer to a box that holds a t value.
— The contents of the box can be read or written.
e Tocreate a fresh box: ref 42

— allocates a new box, initializes its contents to 42, and returns a pointer:

42

— ref 42 : int ref

References

* Newtype: t ref

— Think of it as a pointer to a box that holds a t value.
— The contents of the box can be read or written.
e Tocreate a fresh box: ref 42

— allocates a new box, initializes its contents to 42, and returns a pointer:

42

— ref 42 : int ref
* Toreadthecontents: !r
— if r points to a box containing 42, then return 42.
— ifr : t ref then!r : t
* To write the contents: r := 5
— updates the box that r points to so that it contains 5.
— ifr : t ref thenr := 5 : unit 0

let c ref 0 in

11

Another Example

let ¢ = ref 0 ;;

let next () =
let v = !c in

(c := v+l ; V)

12

Another Example]

let ¢ = ref O

let next () =
let v = !c in
(c := v+l ; V)

S

If el : unit
and e2 : t then
(el ; e2) : t

13

You can also write it like this:

let ¢ = ref O

let next () =
let v = !c in
let = c := v+l in

AV

Another Idiom

Global Mutable Reference

Mutable Reference Captured in Closure

let ¢ = ref O let counter () =
let ¢ = ref 0 in
let next () : int = fun () ->
let v = !c in let v = !c in
(c := v+1 ; Wv) (c := v+1 ; V)
let countA = counter ()
let countB = counter ()
countA countA () ; (* 0 *)
T§ countA () ,; (* 1 *)
[\ countB() ; (* 0 *)
\& countB () ,; (* 1 x*)
countA() ; (* 2 *)

(N
/

in

in

15

Imperative loops

(* sum of 0 .. n *)
let sum (n:int) =
let s = ref 0 in
let current = ref n in
while !current > 0 do
s := !s + !current;
current := !current -
done;
!'s

1

(* print n .. 0 *)
let count down (n:int)
for 1 = n downto 0 do

print int 1;
print newline ()

done

(* print O n x)

let count up (n:int) =
for 1 = 0 to n do

print int 1;
print newline ()
done

Imperative loops?

(* print n .. 0 *)

let count down (n:int)
for 1 = n downto 0 do
print int 1;
print newline ()
done

(* for i=n downto 0 do f£ 1 *)

let rec for down

(n : int)
(f : int -> unit)
unit =

if n >>= 0 then
(f n; for down (n-1) f)
else

()

let count down (n:int) =
for down n (fun 1 ->
print int 1;
print newline ()

)

REFS AND MODULES

Types and References

Concrete, first-order type tells you a lot about a data structure:

e int ==> immutable

* intref ==> mutable

* int*int ==> immutable

e int* (int ref) ==> 1st component immutable, 2" mutable
e .. etc

What about higher-order types?
e int->int ==> the function can't be changed

==> what happens when we run it?

What about abstract types?
e stack, queue? stack * queue?

Functional Stacks

module type STACK =
sig
type ‘a stack
val empty : unit -> ‘a stack
val push : ‘a -> ‘a stack -> ‘a stack

val peek : ‘'a stack -> ‘a option

end

Functional Stacks]

module type STACK =
sig
type ‘a stack
val empty : unit -> ‘a stack
val push : ‘a -> ‘a stack -> ‘'a stack

val peek : ‘a stack -> ‘a option

end

A functional interface takes
in arguments, analyzes them,
and produces new results

Imperative Stacks

module type IMP STACK =
sig
type ‘a stack
val empty : unit -> ‘a stack
val push : ‘a -> ‘a stack -> unit

val peek : ‘'a stack -> ‘a option

end

Imperative Stacks

module type IMP STACK =
sig
type ‘a stack
val empty : unit -> ‘a stack
val push : ‘a -> ‘a stack -> unit

val peek : ‘a stack -> ‘a opti

end When you see “unit” as the
return type, you know the
function is being executed

for its side effects. (Like void

in C/C++/Java.)/

Imperative Stacks

module type IMP STACK =
sig
type ‘a stack
val empty : unit -> ‘a stack
val push : ‘a -> ‘a stack -> unit
val peek : ‘a stack -> ‘a option

val pop : ‘a stack -> ‘a option

end

Unfortunately, we can’t always tell
from the type that there are side-
effects going on. It’s a good idea
to document them explicitly if the
user can perceive them.

Imperative Stacks

module type IMP STACK =

sig
type ‘a stack
val empty unit -> ‘a stack
val push ‘a -> ‘a stack -> unit
val peek ‘a stack -> ‘a option
val pop ‘a stack -> ‘a option

end

Unfortunately, we can’t always tell
from the type that there are side-

effects going on. It’s a good idea
to document them explicitly if the

Sometimes, one uses
references inside a
module but the data
structures have

\

user can perceive“"y

functional (persistent)
W

Imperative Stacks]

module type IMP STACK =
sig
type ‘a stack

. \ This is a terrific
val empty : unit -> ‘a stack way to use

val push : ‘a -> ‘a stack -> references in ML.
Look for these

val peek : ‘a stack -> ‘a opt opportunities

val pop : ‘a stack -> ‘a option

end
Unfortunately, we can’t always tell Sometimes, one uses \
from the type that there are side- references inside a
effects going on. It’s a good idea module but the data
to document them explicitly if the structures have

user can perceive them. functional (persistent)

Imperative Stacks

module ImpStack : IMP STACK =
struct

type ‘a stack = (‘'a list) ref

let empty () : ‘a stack = ref []

let push(x:7a) (s:"a stack) : unit =

S = x::(!s)

let pop(s:’a stack) : ‘a option
match !s with
| [] —-> None
| h::t -> (s := t ; Some h)
end

Imperative Stacks

module ImpStack : IMP STACK =
struct

type ‘a stack = (‘'a list) ref

let empty () : ‘a stack

Note: We don't have to
make everything mutable.
The list is an immutable
data structure stored in a
single mutable cell.

let push(x:7a) (s:"a st

S = x::(!s)

let pop(s:’a stack)
match !s with
| [] —-> None
| h::t -> (s := t ; Some h)
end

Fully Mutable Lists

type ‘a mlist =

Nil | Cons of ‘a * (‘'a mlist ref)

let ml = Cons (1, ref (Cons (2, ref
(Cons (3, ref Nil)))))

\ cons COI’IS cons ref

33

Fraught with Peril

type ‘a mlist =

Nil | Cons of ‘'a * (Ya mlist ref)

let rec mlength(m:’a mlist) : int =
match m with
| Nil -> 0
| Cons(h,t) -> 1 + length(!t)

let r = ref Nil ;;
let m = Cons(3,r) ;;
Too= il g g

mlength m ;;

Fraught with Peril

type ‘a mlist =

Nil | Cons of ‘'a * (Ya mlist ref)

let rec mlength(m:’a mlist) : int =
match m with
| Nil -> 0
| Cons(h,t) -> 1 + length(!t)

let r = ref Nil in

let m = Cons(3,r) in

2= I ¢

mlength m

39

Fraught with Peril

type ‘a mlist =

Nil | Cons of ‘'a * (Ya mlist ref)

let rec mlength(m:’a mlist) : int =
match m with
| Nil -> 0
| Cons(h,t) -> 1 + length(!t)

let r = ref Nil in

let m = Cons(3,r) in

2= I ¢

mlength m

40

Fraught with Peril

type ‘a mlist =

Nil | Cons of ‘'a * (Ya mlist ref)

let rec mlength(m:’a mlist) : int =
match m with
| Nil -> 0
| Cons(h,t) -> 1 + length(!t)

let r = ref Nil in
let m = Cons(3,r) in
T 2= o

mlength m

41

Add mutability judiciously

Two types:

type ‘a very mutable list =
Nil
| Cons of ‘a * (‘a very mutable list ref)

type ‘a less mutable list = ‘a list ref

The first makes cyclic lists possible, the second doesn't
— the second preemptively avoids certain kinds of errors.
— often called a correct-by-construction design

52

[Is it possible to avoid all state?

Yes! (in single-threaded programs)

— Pass in old values to functions; return new values from functions ...
but this isn't necessarily the most efficient thing to do

Consider the difference between our functional stacks and our
imperative ones:

— fnl push : ‘a -> ‘a stack -> ‘a stack

— 1mp push : ‘a -> ‘a stack -> unit

In general, we could pass a dictionary into and out of every function.
— That dictionary would map “addresses” to “values”
* it would record the value of every reference
— But then accessing or updating a reference takes O(lg n) time.
— ... (wonder how bad the constant factors would be, too) ...

MUTABLE RECORDS AND ARRAYS

Records with Mutable Fields

OCaml records with mutable fields:

type 'a queuel =
{front : 'a list ref;
back : 'a list ref }

type 'a queue? =

{mutable front : 'a list;

mutable back : 'a list}
let gl = {front = [1]; back = [2]} in
let g2 = {front = [1]; back = [2]} in

let x = g2.front @ g2.back in

g2.front <- [3]

In fact: type 'a ref = {mutable contents

Mutable Arrays

For arrays, we have:
A. (1)
* to read the ith element of the array A
A. (1) <= 42
* to write the ith element of the array A
Array.make : 1int -> ‘a -> ‘a array

e Array.make 42 ‘x’ creates an array of length 42 with all
elements initialized to the character ‘x’.

See the reference manual for more operations.

www.caml.inria.fr/pub/docs/manual-ocaml/libref/Array.html

56

Factoring!

let factor n =
let s = iInt of float (sgrt (float of int n)) in
let rec £ 1 =
i1f i<=s then
if n mod 1 = 0 then
Some 1
else
f (i+1)
else
None
in £ 2

Factoring!

let factor n =
let s = iInt of float (sgrt (float of int n)) in
let rec £ 1 =
i1f i<=s then
if n mod 1 = 0 then
Some 1
else
f (i+1)
else
None
in £ 2

factor 77

Some '/

factor 97 = None

Caveats

let factor n =
let s =
let rec £ 1 =
if i<=s then
if n mod 1 =
Some 1
else
- f (i4+71)
/ Caveat 1:
Many applications of
prime numbers
are for many-bit (500-
bit, 2000-bit) numbers;
OCaml ints are 31-bit or
63-bit, so you’d want a

int_of_float

N\

version of this for the
K bignums /

(sgrt

0 then

Caveat 2: \

This primitive factoring
algorithm, already
obsolete 2000 years ago,
is not what you’d really
use. Modern algorithms
based on fancy number

(float of int n))

Qheory are much fastey

in

/ Caveat 3: \\

Even the fancy
number-theory algs
take
superpolynomial
time (as function of
the number of bits

NN

Memoized factoring

let table = Hashtbl.create 1000

let memofactor n =
try Hashtbl.find table n
with Not found ->
let p = factor n
in Hashtbl.add table n p; p

memofactor 77 = Some 7/

memofactor 97 = None

Encapsulating the side effects

struct
let table = Hashtbl.create 1000

let memofactor n =
try Hashtbl.find table n
with Not found ->
let p = factor n
in Hashtbl.add table n p; p

let factor n = memofactor n
end

sig
val factor : int -> int
end

The table is hidden inside the function closure.
There's no way for the client to access it, or know it’s there.
We can pretend memofactor is a pure function.

OCaml Objects
class point = let p = new point in
object let x = p#get in
val mutable x = 0
method get x = x p#move 4;
method move d = x <- x + d
end; ; x + p#get (* 0 + 4 *)

http://caml.inria.fr/pub/docs/manual-ocaml-4.00/manual005.html

Xavier Leroy (OCaml inventor):
* No one ever uses objects in OCaml!
* Adding objects to OCaml was one of the best decisions | ever made!

http://caml.inria.fr/pub/docs/manual-ocaml-4.00/manual005.html

SUMMARY

Summary: How/when to use state?

A complicated question!

In general, | try to write the functional version first.
— e.g., prototype
— don’t have to worry about sharing and updates
— don’t have to worry about race conditions
— reasoning is easy (the substitution model is valid!)
Sometimes you find you can’t afford it for efficiency reasons.
— example: routing tables need to be fast in a switch
— constant time lookup, update (hash-table)
When | do use state, | try to encapsulate it behind an interface.
— try to reduce the number of error conditions a client can see
* correct-by-construction design
— module implementer must think explicitly about sharing and invariants
— write these down, write assertions to test them
— if encapsulated in a module, these tests can be localized
— most of your code should still be functional

Summary

Mutable data structures can lead to efficiency improvements.

— e.g., Hash tables, memoization, depth-first search

But they are much harder to get right, so don't jump the gun
— updating in one place may have an effect on other places.

— writing and enforcing invariants becomes more important.
* e.g., assertions we used in the queue example
 why more important? because the types do less ...
— cycles in data (other than functions) can't happen until we
introduce refs.
* must write operations much more carefully to avoid looping
* more cases to deal with and the compiler doesn’t help you!

— we haven’t even gotten to the multi-threaded part.

So use refs when you must, but try hard to avoid it.

67

