
Modules,
Representation Invariants,

and Equivalence
COS 326

David Walker
Princeton University

slides copyright 2018 David Walker
permission granted to reuse these slides for non-commercial educational purposes

Last Time: Representation Invariants
A representation invariant inv(v) is a property that holds of all
values of abstract type.

Representation invariants can be used during debugging:
• check your outputs:

– call inv(v) on all outputs from the module of type t
• if check all outputs, then should not need to check inputs!

– but you can, just in case you missed an output!

Proving representation invariants involves (roughly):
• Assuming invariants hold on inputs to functions
• Proving they hold on outputs to functions

A Higher Order Example

module type NAT =
sig

type t

val from_int : int -> t

val root : t -> t

val fumble : (t -> t) -> t -> t

val foo : (t -> t) -> t

end

module Nat31 : NAT = struct
type t = int

let from_int (n:int) : t =
if n <= 0 then 0 else n

let root n = assert n >= 0; ...

let rec fumble f n = f (root n)

let foo f = f (-1)

end

let inv n : bool =
n >= 0

31-bit
natural numbers

A Higher Order Example

module type NAT =
sig

type t

val from_int : int -> t

val root : t -> t

val fumble : (t -> t) -> t -> t

val foo : (t -> t) -> t

end

module Nat31 : NAT = struct
type t = int

let from_int (n:int) : t =
if n <= 0 then 0 else n

let root n = assert n >= 0; ...

let rec fumble f n = f (root n)

let foo f = f (-1)

end

let inv n : bool =
n >= 0

client code leading failed assert:
• foo (root)
• foo (fumble root)

A Higher Order Example

module type NAT =
sig

type t

val from_int : int -> t

val root : t -> t

val fumble : (t -> t) -> t -> t

val foo : (t -> t) -> t

end

module Nat31 : NAT = struct
type t = int

let from_int (n:int) : t =
if n <= 0 then 0 else n

let root n = assert n >= 0; ...

let rec fumble f n = f (root n)

let foo f = f (-1)

end

let inv n : bool =
n >= 0

Why does this happen?

The module does not preserve the
representation invariant!

When proving foo preserves the
invariant, we must show it produces
a value that is valid for type t.

We can assume f produce a value
valid for type t if it is supplied a
value that is valid for type t ... but f is
not supplied such a value! It is
supplied -1, which does not satisfy
the rep inv

Score Keeping

OCaml: 12

C: -10

Java: -2

C++: depends on
the version

Score Keeping

OCaml: 12

C: -10

Java: -2

C++: depends on
the version

Dave: -1

Recall from last time:

val size : t -> int

val const : int

must prove nothing

must prove nothing

Slide snippet:

We really should be proving that these are total functions.
ie: that they don’t cause a failure on the way to producing a value.

That is quite a bit more than “nothing.”

In all the other proofs we have done in the class, we’ve assumed we
have been working with total functions so this hasn’t been an issue.

However, the idea of a representation invariant is that our functions
with type t -> t are only produce values when inputs v:t satisfy the invariant.
In other words, they are partial functions.

A Higher Order Example

module type NAT =
sig

type t

val from_int : int -> t

val root : t -> t

val fumble : (t -> t) -> t -> t

val foo : (t -> t) -> t

end

module Nat31 : NAT = struct
type t = int

let from_int (n:int) : t =
if n <= 0 then 0 else n

let root n = assert n >= 0; ...

let rec fumble f n = f (root n)

let foo f = f (-1)

end

let inv n : bool =
n >= 0

client code leading failed assert:
• foo (root)
• foo (fumble root)

bad thing isn’t
really due to
result type

A Higher Order Example

module type NAT =
sig

type t

val from_int : int -> t

val root : t -> t

val fumble : (t -> t) -> t -> t

val foo : (t -> int) -> int

end

module Nat31 : NAT = struct
type t = int

let from_int (n:int) : t =
if n <= 0 then 0 else n

let root n = assert n >= 0; ...

let rec fumble f n = f (root n)

let foo f = f (-1)

end

let inv n : bool =
n >= 0

client code leading failed assert:
• foo (fun x -> root x; 0)

something
bad still
happens

Moral of the Story
If a function has type t -> int, we should prove it is total

– a total function is one that will produce a value and won’t fail

We should prove other functions, regardless of type are total too

What I want you to know:
– functions can call other functions with a module and doing so

could violate their preconditions/rep invariants
– watch for higher-order functions too
– we should prove functions are total, but I won’t make you

actually do proofs of totality on exams.
• this isn’t hard, but we’ve got other things to learn too!

– but I want you to be able to pick out examples/problems where
we define functions that aren’t total and hence cause failures or
violate rep invs

MODULE EQUIVALENCE

Last Time: Reasoning about Abstractions

a1 a2

c1 c2

abstraction
function

f_abstract

f_concrete

abstraction
function

To prove an abstraction is sound (ie, a faithful description of what is going on):
abstraction function then abstract op == concrete op then abstraction function

concrete values that
obey the rep. invariant

An abstraction function is just one kind of relation between two modules.

We can use the notion of relations between values to reason
about the equivalence of 2 different implementations of an interface.

As we go along, watch for a very similar pattern to what we saw concerning
representation invariants.

The difference is going to be that representation invariants involve 1 module
whereas module equivalence involves 2 modules.

This “pattern” is known as a logical relation.

Recall Expression Equivalence
Two expressions e1 and e2 are equivalent when:
• e1 -->* v1 and e2 -->* v2 and v1 = v2,
• they both diverge, or
• they both raise the same exception

(When doing our proofs, we assumed all expressions terminate
normally, so our proofs focused on situations where we needed
to case 1 exclusively.)

Reasoning about Module Equivalence
Two expressions e1 and e2 are equivalent when:
• e1 -->* v1 and e2 -->* v2 and v1 = v2,
• they both diverge, or
• they both raise the same exception

When are two modules equivalent?
• We can’t just ask M1.f x and M2.f x to return the “same” value

– the values might not even have the same type!

Reasoning about Module Equivalence

Two expressions e1 and e2 are equivalent when:

• e1 -->* v1 and e2 -->* v2 and v1 = v2

• they both diverge

• they both raise the same exception

When are two modules equivalent?

• We can’t just ask M1.f x and M2.f x to return the “same” value

– the values might not even have the same type!

module type S =

sig

type t

val zero : t

val bump : t -> t

end

Reasoning about Module Equivalence

Two expressions e1 and e2 are equivalent when:

• e1 -->* v1 and e2 -->* v2 and v1 = v2

• they both diverge

• they both raise the same exception

When are two modules equivalent?

• We can’t just ask M1.f x and M2.f x to return the “same” value

– the values might not even have the same type!

module M1 : S =

struct

type t = int

let bump x = x + 1

end

module M2 : S =

struct

type t = Zero | S of t

let bump x = S x

end

module type S =

sig

type t

val zero : t

val bump : t -> t

end

Reasoning about Module Equivalence

Two modules with abstract type t will be declared equivalent if:
• one can define a relation between corresponding values of type t
• one can show that the relation is preserved by all operations

If we do indeed show the relation is “preserved” by operations of the
module (an idea that depends crucially on the types of such
operations) then no client will ever be able to tell the difference
between those two modules!

Two modules with abstract type t will be declared equivalent if:
• one can define a relation between corresponding values of type t
• one can show that the relation is preserved by all operations

What does it mean to “preserve” the relation

a1

c1M1

M2

f : t -> trelated
values

Two modules with abstract type t will be declared equivalent if:
• one can define a relation between corresponding values of type t
• one can show that the relation is preserved by all operations

What does it mean to “preserve” the relation

a1 a2

c1 c2

f

f
M1

M2

f : t -> trelated
values

Two modules with abstract type t will be declared equivalent if:
• one can define a relation between corresponding values of type t
• one can show that the relation is preserved by all operations

What does it mean to “preserve” the relation

if a1 and c1 are related, then M1’s version of f should produce a value a2
that is related to the value that M2’s version of f produces.

a1 a2

c1 c2

f

f
M1

M2

f : t -> trelated
values

Two modules with abstract type t will be declared equivalent if:
• one can define a relation between corresponding values of type t
• one can show that the relation is preserved by all operations

What does it mean to “preserve” the relation

a1

c1M1

M2

f : t -> int

Two modules with abstract type t will be declared equivalent if:
• one can define a relation between corresponding values of type t
• one can show that the relation is preserved by all operations

What does it mean to “preserve” the relation

a1

i

c1

f

fM1

M2

f : t -> int
int

Two modules with abstract type t will be declared equivalent if:
• one can define a relation between corresponding values of type t
• one can show that the relation is preserved by all operations

What does it mean to “preserve” the relation

a1

c1

f

fM1

M2

f : t -> int

if a1 and c1 are related, then M1’s version of f should produce a value i
that is identical to the value that M2 produces.

iint

Two modules with abstract type t will be declared equivalent if:
• one can define a relation between corresponding values of type t
• one can show that the relation is preserved by all operations

What does it mean to “preserve” the relation

(a1, a2)

(c1, c2)M1

M2 f : t * t -> int

Two modules with abstract type t will be declared equivalent if:
• one can define a relation between corresponding values of type t
• one can show that the relation is preserved by all operations

What does it mean to “preserve” the relation

(a1, a2)

i

(c1, c2)

f

fM1

M2 f : t * t -> int

int

Two modules with abstract type t will be declared equivalent if:
• one can define a relation between corresponding values of type t
• one can show that the relation is preserved by all operations

What does it mean to “preserve” the relation

(a1, a2)

i

(c1, c2)

f

fM1

M2 f : t * t -> int

if the first components are related,
and the second components are related,
then M1’s version of f should produce a value i
that is identical to the value that M2 produces.

int

Two modules with abstract type t will be declared equivalent if:
• one can define a relation between corresponding values of type t
• one can show that the relation is preserved by all operations

What does it mean to “preserve” the relation

i f : int -> t * tint

Two modules with abstract type t will be declared equivalent if:
• one can define a relation between corresponding values of type t
• one can show that the relation is preserved by all operations

What does it mean to “preserve” the relation

(a1, a2)

i

(c1, c2)

M2.f

M2

f : int -> t * t

M1.f

int

Two modules with abstract type t will be declared equivalent if:
• one can define a relation between corresponding values of type t
• one can show that the relation is preserved by all operations

What does it mean to “preserve” the relation

(a1, a2)

i

(c1, c2)

M2.f

M2

f : int -> t * t

M1.f Given identical values i,
M1.f should produce (c1,c2)
M2.f should produce (a1,a2)
and a1 should be related to c1;
and a2 should be related to c2

int

More Generally

To prove M1 == M2 relative to signature S,

– Start by defining a relation “is_related” for the abstract type t:

• is_related (v1, v2) should hold for values with abstract type t when v1

comes from module M1 and v2 comes from module M2

– Extend “is_related” to types other than just abstract t. For example:

• if v1, v2 have type int, then they must be exactly the same

– ie, we must prove: v1 == v2

• if v1, v2 have type s1 -> s2 then we consider arg1, arg2 such that:

– if is_related(arg1, arg2) for type s1 then we prove

– is_related(v1 arg1, v2 arg2) for type s2

• if v1, v2 have type s option then we must prove:

– v1 == None and v2 == None, or

– v1 == Some u1 and v2 == Some u2 and is_related(u1, u2) at type s

– For each val v:s in S, prove is_related(M1.v, M2.v) at type s

Logical Relations

is_related (v1, v2) at type t -- for module equivalence

valid (v) at type t -- for establishing rep invariants

are both logical relations. They lift properties at abstract type t to
properties at higher types (like t -> t) in a logical way.

AN EXAMPLE MODULE
EQUIVALENCE

One Signature, Two Implementations

module type S =
sig
type t
val zero : t
val bump : t -> t
val reveal : t -> int

end

module M1 : S =
struct
type t = int
let zero = 0
let bump n = n + 1
let reveal n = n

end

module M2 : S =
struct
type t = int
let zero = 2
let bump n = n + 2
let reveal n = n/2 - 1

end

Consider a client that might use the module:

What is the relationship?

let x1 = M1.bump (M1.bump (M1.zero)
in M1.reveal x1

let x2 = M2.bump (M2.bump (M2.zero)
in M2.reveal x2

let is_related (x1, x2) =
x1 == x2/2 - 1

One Signature, Two Implementations

module type S =

sig

type t

val zero : t

val bump : t -> t

val reveal : t -> int

end

module M1 : S =

struct

type t = int

let zero = 0

let bump n = n + 1

let reveal n = n

end

module M2 : S =

struct

type t = int

let zero = 2

let bump n = n + 2

let reveal n = n/2 - 1

end

To prove module equivalence, we have to consider all elements of the

signature S separately. ie: zero, bump and reveal

For each such operation, we need to show is_related(v1,v2) at type s

when v1 is from M1 and v2 is from M2 and s is the type of that element in

the signature.

One Signature, Two Implementations

Consider zero, which has abstract type t.

is_related (x1, x2) =
x1 == x2/2 - 1

Must prove: is_related (M1.zero, M2.zero)

Proof:
M1.zero

== 0 (substitution)
== 2/2 – 1 (math)
== M2.zero/2 – 1 (subsitution)

Equivalent to proving: M1.zero == M2.zero/2 – 1

module type S =
sig
type t
val zero : t
val bump : t -> t
val reveal : t -> int

end

module M1 : S =
struct
type t = int
let zero = 0
let bump n = n + 1
let reveal n = n

end

module M2 : S =
struct
type t = int
let zero = 2
let bump n = n + 2
let reveal n = n/2 - 1

end

One Signature, Two Implementations

Consider bump, which has abstract type t -> t.

Must prove for all v1:int, v2:int
if is_related(v1,v2) then is_related (M1.bump v1, M2.bump v2)

Proof:
(1) Assume is_related(v1, v2).
(2) v1 == v2/2 – 1 (by def)

Next, prove:
(M2.bump v2)/2 – 1 == M1.bump v1

(M2.bump v2)/2 - 1
== (v2 + 2)/2 – 1 (eval)
== (v2/2 – 1) + 1 (math)
== v1 + 1 (by 2)
== M1.bump v1 (eval, reverse)

module type S =
sig
type t
val zero : t
val bump : t -> t
val reveal : t -> int

end

module M1 : S =
struct
type t = int
let zero = 0
let bump n = n + 1
let reveal n = n

end

module M2 : S =
struct
type t = int
let zero = 2
let bump n = n + 2
let reveal n = n/2 - 1

end

is_related (x1, x2) =
x1 == x2/2 - 1

One Signature, Two Implementations

Consider reveal, which has type t -> int.

Must prove for all v1:int, v2:int
if is_related(v1,v2) then M1.reveal v1 == M2.reveal v2

Proof:
(1) Assume is_related(v1, v2).
(2) v1 == v2/2 – 1 (by def)

Next, prove:
M2.reveal v2 == M1.reveal v1

(M2.reveal v2)
== v2/2 – 1 (eval)
== v1 (by 2)
== M1.reveal v1 (eval, reverse)

module type S =
sig
type t
val zero : t
val bump : t -> t
val reveal : t -> int

end

module M1 : S =
struct
type t = int
let zero = 0
let bump n = n + 1
let reveal n = n

end

module M2 : S =
struct
type t = int
let zero = 2
let bump n = n + 2
let reveal n = n/2 - 1

end
is_related (x1, x2) =
x1 == x2/2 - 1

Summary of Proof Technique
To prove M1 == M2 relative to signature S,

– Start by defining a relation “is_related” on abstract type t:
• is_related (v1, v2) should hold for values with abstract type t when v1

comes from module M1 and v2 comes from module M2

– Extend “is_related” to types other than just abstract t. For example:
• if v1, v2 have type int, then they must be exactly the same

– ie, we must prove: v1 == v2
• if v1, v2 have type s1 -> s2 then we consider arg1, arg2 such that:

– if is_related(arg1, arg2) then we prove
– is_related(v1 arg1, v2 arg2)

• if v1, v2 have type s option then we must prove:
– v1 == None and v2 == None, or
– v1 == Some u1 and v2 == Some u2 and is_related(u1, u2) at type s

– For each val v:s in S, prove is_related(M1.v, M2.v) at type s

Serial Killer or PL Researcher?

Serial Killer or PL Researcher?

Luis Alfredo Garavito: super evil guy.
In the 1990s killed between 139-400+
children in Colombia. According to
wikipedia, killed more individuals than
any other serial killer. Due to
Colombian law, only imprisoned for 30
years; decreased to 22.

John Reynolds: super nice guy, 1935-2013

Discovered the polymorphic lambda
calculus (first polymorphic type system).

Developed Relational Parametricity: A
technique for proving the equivalence of
modules.

Summary: Abstraction and Equivalence

Abstraction functions define the relationship between a concrete
implementation and the abstract view of the client

– We should prove concrete operations implement abstract ones
described to our customers/clients

We prove any two modules are equivalent by
– Defining a relation between values of the modules with abstract type
– We get to assume the relation holds on inputs; prove it on outputs

Rep invs and “is_related” predicates are called logical relations

COMBINING REP INVS AND
MODULE EQUIVALENCE
(NOT COVERED IN LECTURE, BUT TAKE A LOOK)

Representing Ints
module Num =
struct
type t = Zero | Pos of int | Neg of int

let create (n:int) : t =
if n = 0 then Zero
else if n > 0 then Pos n
else Neg (abs n)

let equals (n1:t) (n2:t) : bool =
match n1, n2 with

Zero, Zero -> true
| Pos n, Pos m when n = m -> true
| Neg n, Neg m when n = m -> true
| _ -> false

end

module type NUM =
sig
type t
val create : int -> t
val equals : t -> t -> bool
val decr : t -> t

end

Representing Ints
module Num =
struct
type t = Zero | Pos of int | Neg of int

let create (n:int) : t = ...

let equals (n1:t) (n2:t) : bool = ...

let decr (n:t) : t =
match t with

Zero -> Neg 1
| Pos n when n > 1 -> Pos (n-1)
| Pos n when n = 1 -> Zero
| Neg n -> Neg (n+1)

end

module type NUM =
sig
type t
val create : int -> t
val equals : t -> t -> bool
val decr : t -> t

end

Representing Ints
module Num =
struct
type t = Zero | Pos of int | Neg of int

let create (n:int) : t = ...

let equals (n1:t) (n2:t) : bool = ...

let decr (n:t) : t =
match t with

Zero -> Neg 1
| Pos n when n > 1 -> Pos (n-1)
| Pos n when n = 1 -> Zero
| Neg n -> Neg (n+1)

end

module type NUM =
sig
type t
val create : int -> t
val equals : t -> t -> bool
val decr : t -> t

end

let inv (n:t) : bool =
match n with

Zero -> true
| Pos n when n > 0 -> true
| Neg n when n > 0 -> true
| _ -> false

Representing Ints
module Num =
struct
type t = Zero | Pos of int | Neg of int

let create (n:int) : t = ...

let equals (n1:t) (n2:t) : bool = ...

let decr (n:t) : t =
match t with

Zero -> Neg 1
| Pos n when n > 1 -> Pos (n-1)
| Pos n when n = 1 -> Zero
| Neg n -> Neg (n+1)

end

module type NUM =
sig
type t
val create : int -> t
val equals : t -> t -> bool
val decr : t -> t

end

let inv (n:t) : bool =
match n with

Zero -> true
| Pos n when n > 0 -> true
| Neg n when n > 0 -> true
| _ -> false

To prove inv is a good rep invariant, prove that:
(1) for all x:int, inv(create x)
(2) nothing for equals (3) for all v1:t, if inv(v1) then inv(decr v1)

Representing Ints
module Num =
struct
type t = Zero | Pos of int | Neg of int

let create (n:int) : t = ...

let equals (n1:t) (n2:t) : bool = ...

let decr (n:t) : t =
match t with

Zero -> Neg 1
| Pos n when n > 1 -> Pos (n-1)
| Pos n when n = 1 -> Zero
| Neg n -> Neg (n+1)

end

module type NUM =
sig
type t
val create : int -> t
val equals : t -> t -> bool
val decr : t -> t

end

let inv (n:t) : bool =
match n with

Zero -> true
| Pos n when n > 0 -> true
| Neg n when n > 0 -> true
| _ -> false

let abs(n:t) : int =
match t with

Zero -> 0
| Pos n -> n
| Neg n -> n

once we have proven the rep inv, we can use it.
eg, if we add abs to the module (and prove it doesn't violate
the rep inv) then we can use inv to show that abs always
returns a non-negative number.

Another Implementation
module Num2 =
struct
type t = int

let create (n:int) : t = n

let equals (n1:t) (n2:t) : bool = n1 = n2

let decr (n:t) : t = n - 1
end

module type NUM =
sig
type t
val create : int -> t
val equals : t -> t -> bool
val decr : t -> t

end

let inv2 (n:t) : bool = true

Another Implementation
module type NUM =
sig
type t
val create : int -> t
val equals : t -> t -> bool
val decr : t -> t

end

Question: can client programs
tell Num, Num2 apart?

module Num =
struct
type t = Zero | Pos of int | Neg of int

let create (n:int) : t = ...

let equals (n1:t) (n2:t) : bool = ...

let decr (n:t) : t = ...
end

module Num2 =
struct
type t = int

let create (n:int) : t = n

let equals (n1:t) (n2:t) : bool = n1 = n2

let decr (n:t) : t = n - 1
end

Another Implementation
module type NUM =
sig
type t
val create : int -> t
val equals : t -> t -> bool
val decr : t -> t

end

module Num =
struct
type t = Zero | Pos of int | Neg of int

let create (n:int) : t = ...

let equals (n1:t) (n2:t) : bool = ...

let decr (n:t) : t = ...
end

module Num2 =
struct
type t = int

let create (n:int) : t = n

let equals (n1:t) (n2:t) : bool = n1 = n2

let decr (n:t) : t = n - 1
end

First, find relation between valid
representations of the type t.

Another Implementation
module type NUM =
sig
type t
val create : int -> t
val equals : t -> t -> bool
val decr : t -> t

end

module Num =
struct
type t = Zero | Pos of int | Neg of int

let create (n:int) : t = ...

let equals (n1:t) (n2:t) : bool = ...

let decr (n:t) : t = ...
end

module Num2 =
struct
type t = int

let create (n:int) : t = n

let equals (n1:t) (n2:t) : bool = n1 = n2

let decr (n:t) : t = n - 1
end

First, find relation between valid
representations of the type t.

let rel(x:t, y:int) : bool =
match x with
Zero -> y = 0

| Pos n -> y = n
| Neg n -> -y = n

Another Implementation

module type NUM =
sig
type t
val create : int -> t
val equals : t -> t -> bool
val decr : t -> t

end

module Num =
struct
type t = Zero | Pos of int | Neg of int

let create (n:int) : t = ...

let equals (n1:t) (n2:t) : bool = ...

let decr (n:t) : t = ...
end

module Num2 =
struct
type t = int

let create (n:int) : t = n

let equals (n1:t) (n2:t) : bool = n1 = n2

let decr (n:t) : t = n - 1
end

Next, prove the modules establish
the relation.

Another Implementation

module type NUM =
sig
type t
val create : int -> t
val equals : t -> t -> bool
val decr : t -> t

end

module Num =
struct
type t = Zero | Pos of int | Neg of int

let create (n:int) : t = ...

let equals (n1:t) (n2:t) : bool = ...

let decr (n:t) : t = ...
end

module Num2 =
struct
type t = int

let create (n:int) : t = n

let equals (n1:t) (n2:t) : bool = n1 = n2

let decr (n:t) : t = n - 1
end

for all x:int,
rel (Num.create x) (Num2.create x)

Next, prove the modules establish
the relation.

Another Implementation

module type NUM =
sig
type t
val create : int -> t
val equals : t -> t -> bool
val decr : t -> t

end

module Num =
struct
type t = Zero | Pos of int | Neg of int

let create (n:int) : t = ...

let equals (n1:t) (n2:t) : bool = ...

let decr (n:t) : t = ...
end

module Num2 =
struct
type t = int

let create (n:int) : t = n

let equals (n1:t) (n2:t) : bool = n1 = n2

let decr (n:t) : t = n - 1
end

for all x1,x2:t, y1,y2:int
if inv(x1), inv(x2), inv2(y1), inv2(y2) and

rel(x1,y1) and rel(x2,y2)
then

(Num.equals x1 x2) = (Num2.equals y1 y2)

Next, prove the modules establish
the relation.

Another Implementation

module type NUM =
sig
type t
val create : int -> t
val equals : t -> t -> bool
val decr : t -> t

end

module Num =
struct
type t = Zero | Pos of int | Neg of int

let create (n:int) : t = ...

let equals (n1:t) (n2:t) : bool = ...

let decr (n:t) : t = ...
end

module Num2 =
struct
type t = int

let create (n:int) : t = n

let equals (n1:t) (n2:t) : bool = n1 = n2

let decr (n:t) : t = n - 1
end

for all x1:t, y1:int
if inv(x1) and inv2(y1) and

rel(x1,y1)
then

rel (Num.decr x1) (Num2.decr y1)

Next, prove the modules establish
the relation.

