
Lazy Evaluation &
Infinite Data

COS 326
David Walker

Princeton University

Some ideas in this lecture borrowed from Brigitte Pientka, McGill University

AN INFINITE DATA STRUCTURE:
STREAMS

Streams

Sometimes it is useful to define the entirety of an infinite data set now
and sample finite parts of it later ...

Streams

2 3primes 5 ...

Sometimes it is useful to define the entirety of an infinite data set now
and sample finite parts of it later ...

Streams

2 3primes 5 ...

3 1pi 4 ...

Sometimes it is useful to define the entirety of an infinite data set now
and sample finite parts of it later ...

Streams

2 3primes 5 ...

3 1pi 4 ...

Bid1 Bid2market Bid3 ...

Sometimes it is useful to define the entirety of an infinite data set now
and sample finite parts of it later ...

Consider this definition:

7

We can write functions to extract the head and tail of a stream:

type ‘a stream =
Cons of ‘a * (‘a stream)

let head(s:’a stream):’a =
match s with
| Cons (h,_) -> h

let tail(s:’a stream):’a stream =
match s with
| Cons (_,t) -> t

But there’s a problem…

8

How do I build a value of type ‘a stream?

Cons (3, Cons (4, ___)) Cons (3, ___)

type ‘a stream =
Cons of ‘a * (‘a stream)

But there’s a problem…

9

How do I build a value of type ‘a stream?

There doesn’t seem to be a base case (e.g., Nil)

Since we need a stream to build a stream,
what can we do to get started?

Cons (3, Cons (4, ___)) Cons (3, ___)

type ‘a stream =
Cons of ‘a * (‘a stream)

An alternative would be to use refs

This works ...
but has a serious drawback

None

Cons(h, r)

r

None

c

Cons(h, r)

Some c

c

type ‘a stream =
Cons of ‘a * (‘a stream) option ref

let circular_cons h =
let r = ref None in
let c = Cons(h,r) in
(r := (Some c); c)

An alternative would be to use refs

11

.... when we try to get out the tail, it may not exist.

type ‘a stream =
Cons of ‘a * (‘a stream) option ref

let circular_cons h =
let r = ref None in
let c = Cons(h,r) in
(r := (Some c); c)

Back to our earlier idea

12

Let's look at creating the stream of all natural numbers:

let n = nats 0;;
Stack overflow during evaluation (looping recursion?).

OCaml evaluates our code just a little bit too eagerly.
We want to evaluate the right-hand side only when necessary ...

type ‘a stream =
Cons of ‘a * (‘a stream)

let rec nats i = Cons(i,nats (i+1))

Another idea

13

One way to implement “waiting” is to wrap a computation
up in a function and then call that function later when we want to.

Another attempt:

Darn. Doesn’t type check!
It’s a function with type
unit -> int stream
not just int stream

Are there any problems
with this code?

type ‘a stream =
Cons of ‘a * (‘a stream)

let rec ones =
fun () -> Cons(1,ones)

let head x =
match x () with
Cons (hd, tail) -> hd

Functional Implementation

14

What if we changed the definition of streams one more time?

Or, the way we’d normally write it:

mutually recursive
type definition

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

let rec ones : int stream =
fun () -> Cons(1,ones)

let rec ones () = Cons(1,ones)

Functional Implementation

15

How would we define head, tail, and map of an 'a stream?

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

Functional Implementation

16

How would we define head, tail, and map of an 'a stream?

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

let head(s:’a stream):’a =
...

Functional Implementation

17

How would we define head, tail, and map of an 'a stream?

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

let head(s:’a stream):’a =
match s() with
| Cons(h,_) -> h

Functional Implementation

18

How would we define head, tail, and map of an 'a stream?

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

let head(s:’a stream):’a =
match s() with
| Cons(h,_) -> h

let tail(s:’a stream):’a stream =
...

Functional Implementation

19

How would we define head, tail, and map of an 'a stream?

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

let head(s:’a stream):’a =
match s() with
| Cons(h,_) -> h

let tail(s:’a stream):’a stream =
match s() with
| Cons(_,t) -> t

Functional Implementation

20

How would we define head, tail, and map of an 'a stream?

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

let rec map (f:’a->’b) (s:’a stream) : ’b stream =
...

Functional Implementation

21

How would we define head, tail, and map of an 'a stream?

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

let rec map (f:’a->’b) (s:’a stream) : ’b stream =
Cons(f (head s), map f (tail s))

Functional Implementation

22

How would we define head, tail, and map of an 'a stream?

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

let rec map (f:’a->’b) (s:’a stream) : ’b stream =
Cons(f (head s), map f (tail s))

Rats!

Infinite looping!

Functional Implementation

23

How would we define head, tail, and map of an 'a stream?

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

let rec map (f:’a->’b) (s:’a stream) : ’b stream =
Cons(f (head s), map f (tail s))

Doesn’t type check!
Cons (x,y) is a str not a stream

Functional Implementation

24

How would we define head, tail, and map of an 'a stream?

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

let rec map (f:’a->’b) (s:’a stream) : ’b stream =
fun () -> Cons(f (head s), map f (tail s))

Importantly, map
must return a

function, which
delays evaluating

the recursive call to
map.

Functional Implementation

25

How would we define head, tail, and map of an 'a stream?

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

let rec map (f:’a->’b) (s:’a stream) : ’b stream =
fun () -> Cons(f (head s), map f (tail s))

let rec ones = fun () -> Cons(1,ones)

let inc x = x + 1

let twos = map inc ones

Functional Implementation

26

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

let rec map (f:’a->’b) (s:’a stream) : ’b stream =
fun () -> Cons(f (head s), map f (tail s))

let rec ones = fun () -> Cons(1,ones)
let twos = map (fun x -> x+1) ones

head twos
--> head (map inc ones)
--> head (fun () -> Cons (inc (head ones), map inc (tail ones)))
--> match (fun () -> ...) () with Cons (hd, _) -> h
--> match Cons (inc (head ones), map inc (tail ones)) with Cons (hd, _) -> h
--> match Cons (inc (head ones), fun () -> ...) with Cons (hd, _) -> h
--> ... --> 2

Functional Implementation

27

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

let rec zip f s1 s2 =
fun () ->
Cons(f (head s1) (head s2),

zip f (tail s1) (tail s2))

Functional Implementation

28

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

let rec zip f s1 s2 =
fun () ->
Cons(f (head s1) (head s2),

zip f (tail s1) (tail s2))

let threes = zip (+) ones twos

Functional Implementation

29

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

let rec zip f s1 s2 =
fun () ->
Cons(f (head s1) (head s2),

zip f (tail s1) (tail s2))

let threes = zip (+) ones twos

let rec fibs =
fun () ->
Cons(0, fun () ->

Cons (1,
zip (+) fibs (tail fibs)))

Unfortunately

30

This is not very efficient:

Every time we want to look at a stream (e.g., to get the head or
tail), we have to re-run the function.

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

Unfortunately

31

This is not very efficient:

Every time we want to look at a stream (e.g., to get the head or
tail), we have to re-run the function.

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

let x = head s
let y = head s rerun the entire

underlying function
as opposed to fetching
the first element of
a list

let head(s:’a stream):’a =
match s() with
| Cons(h,_) -> h

Unfortunately

32

This is really, really inefficient:

So when you ask for the 10th fib and then the 11th fib, we are re-
calculating the fibs starting from 0...

If we could cache or memoize the result of previous fibs...

let rec fibs =
fun () ->
Cons(0, fun () ->

Cons (1,
zip (+) fibs (tail fibs)))

LAZY EVALUATION

Lazy Data
We can take advantage of mutation to memoize:

type ‘a lazy = ‘a thunk ref

type ‘a thunk =
Unevaluated of (unit -> ‘a) | Evaluated of ‘a

Unevaluated

fun x ->

Evaluated 3

initially: after evaluating once:

Lazy Data
We can take advantage of mutation to memoize:

type ‘a lazy = ‘a thunk ref

type ‘a thunk =
Unevaluated of (unit -> ‘a) | Evaluated of ‘a

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) lazy_t

Lazy Data

type ‘a lazy = ‘a thunk ref

type ‘a thunk =
Unevaluated of (unit -> ‘a) | Evaluated of ‘a

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) lazy_t

let rec head(s:’a stream):’a =

Lazy Data

type ‘a lazy = ‘a thunk ref

type ‘a thunk =
Unevaluated of (unit -> ‘a) | Evaluated of ‘a

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) lazy_t

let rec head(s:’a stream):’a =
match !s with
| Evaluated (Cons(h,_)) ->
| Unevaluated f ->

Lazy Data

type ‘a lazy = ‘a thunk ref

type ‘a thunk =
Unevaluated of (unit -> ‘a) | Evaluated of ‘a

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) lazy_t

let rec head(s:’a stream):’a =
match !s with
| Evaluated (Cons(h,_)) -> h
| Unevaluated f ->

Lazy Data

type ‘a lazy = ‘a thunk ref

type ‘a thunk =
Unevaluated of (unit -> ‘a) | Evaluated of ‘a

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) lazy_t

let rec head(s:’a stream):’a =
match !s with
| Evaluated (Cons(h,_)) -> h
| Unevaluated f ->

let x = f() in (s := Evaluated x; head s)

Lazy Data

type ‘a lazy = ‘a thunk ref

type ‘a thunk =
Unevaluated of (unit -> ‘a) | Evaluated of ‘a

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) lazy_t

let rec tail(s:’a stream) : ’a stream =
match !s with
| Evaluated (Cons(_,t)) -> t
| Unevaluated f ->
(let x = f () in s := Evaluated x; tail s)

Lazy Data

type ‘a lazy = ‘a thunk ref

type ‘a thunk =
Unevaluated of (unit -> ‘a) | Evaluated of ‘a

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) lazy_t

let rec tail(s:’a stream) : ’a stream =
match !s with
| Evaluated (Cons(_,t)) -> t
| Unevaluated f ->

let x = f() in (s := Evaluated x; tail s)

let rec head(s:’a stream):’a =
match !s with
| Evaluated (Cons(h,_)) -> h
| Unevaluated f ->

let x = f() in (s := Evaluated x; head s)

Lazy Data

type ‘a lazy = ‘a thunk ref

type ‘a thunk =
Unevaluated of (unit -> ‘a) | Evaluated of ‘a

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) lazy_t

let rec tail(s:’a stream) : ’a stream =
match !s with
| Evaluated (Cons(_,t)) -> t
| Unevaluated f ->

let x = f() in (s := Evaluated x; tail s)

let rec head(s:’a stream):’a =
match !s with
| Evaluated (Cons(h,_)) -> h
| Unevaluated f ->

let x = f() in (s := Evaluated x; head s)

Common pattern!

Dereference & check if evaluated:
• If so, take the value.
• If not, evaluate it & take the

value

Memoizing Streams
type ‘a thunk =

Unevaluated of (unit -> ‘a) | Evaluated of ‘a
type ‘a lazy_t = (‘a thunk) ref

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) lazy_t

let rec force(t:’a lazy_t):’a =
match !t with
| Evaluated v -> v
| Unevaluated f ->

let v = f() in
(t:= Evaluated v ; v)

let head(s:’a stream) : ’a =
match force s with
| Cons(h,_) -> h

let tail(s:’a stream) : ’a stream =
match force s with
| Cons(_,t) -> t

Memoizing Streams

type ‘a thunk =
Unevaluated of unit -> ‘a | Evaluated of ‘a

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) thunk ref

let rec ones =
ref (Unevaluated (fun () -> Cons(1,ones)))

Memoizing Streams

type ‘a thunk =
Unevaluated of unit -> ‘a | Evaluated of ‘a

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) thunk ref

let lazy f = ref (Unevaluated f)

let rec ones =
lazy (fun () -> Cons(1,ones))

What’s the interface?

46

type ‘a lazy

val lazy : (unit -> ‘a) -> ‘a lazy

val force : ‘a lazy -> ‘a

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) lazy

let rec ones =
lazy(fun () -> Cons(1,ones))

What’s the interface?

type ‘a lazy

val thunk : (unit -> ‘a) -> ‘a lazy

val force : ‘a lazy -> ‘a

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) lazy

let rec zip f s1 s2 = lazy (fun () ->
match force s1, force s2 with
Cons (x1,r1), Cons (x2,r2) -> Cons (f x1 x2,

zip f r1 r2)
)

OCaml’s Builtin Lazy Constructor

48

If you use Ocaml’s built-in lazy_t, then you can write:

and this takes care of wrapping a “ref (Unevaluated (fun () -> …))”
around the whole thing. It has the effect of suspending the
computation until you use Lazy.force

So for example:

let rec ones = lazy (Cons(1,ones))

let rec fibs =
lazy (Cons(0,
lazy (Cons(1,
zip (+) fibs (tail fibs)))))

The whole example at once
type 'a str = Cons of 'a * 'a stream
and 'a stream = ('a str) Lazy.t;;

let rec zip f (s1: 'a stream) (s2: 'a stream) : 'a stream =
lazy (match Lazy.force s1, Lazy.force s2 with

Cons (x1,r1), Cons (x2,r2) ->
Cons (f x1 x2, zip f r1 r2))

let tail (s: 'a stream) : 'a stream =
match Lazy.force s with Cons (x,r) -> r

let rec fibs : int stream =
lazy (Cons(0, lazy (Cons (1, zip (+) fibs (tail fibs)))));;

let rec printn n s =
if n>0 then
match Lazy.force s with
Cons (x,r) -> (printf “%d\n” x; printn (n-1) r)

let _ = printn 10 fibs

EVALUATION ORDER:
CALL-BY-VALUE VS
CALL-BY-NAME VS
LAZY

OCaml is Call-by-value

let x = e1 in e2

Evaluation strategy:
• evaluate e1 until you get a value
• bind that value to x
• evaluate e2 until you get a value

let x = 2 + 3 in x – 7
--> let x = 5 in x – 7
--> 5 – 7
--> -2

Example

evaluate 2 + 3 first

OCaml is Call-by-value

let x = e1 in e2

Evaluation strategy:
• evaluate e1 until you get a value
• bind that value to x
• evaluate e2 until you get a value

e1 e2

Evaluation strategy:
• evaluate e1 until you get a value (fun x -> e)
• evaluate e2 until you get a value (v)
• substitute v for x in e to get e’
• continue evaluating e’ until you get a value

OCaml is Call-by-value

let x = e1 in e2

Evaluation strategy:
• evaluate e1 until you get a value
• bind that value to x
• evaluate e2 until you get a value

e1 e2

Evaluation strategy:
• evaluate e1 until you get a value (fun x -> e)
• evaluate e2 until you get a value (v)
• substitute v for x in e to get e’
• continue evaluating e’ until you get a value

Is this the only way we could evaluate these expressions?
Is this the most efficient way we could evaluate these expressions?

OCaml is Call-by-value

let x = e1 in e2

Evaluation strategy:
• evaluate e1 until you get a value
• bind that value to x
• evaluate e2 until you get a value

e1 e2

Evaluation strategy:
• evaluate e1 until you get a value (fun x -> e)
• evaluate e2 until you get a value (v)
• substitute v for x in e to get e’
• continue evaluating e’ until you get a value

Is this the only way we could evaluate these expressions? No!
Is this the most efficient way we could evaluate these expressions? No!

Call-by-Name

let x = e1 in e2
Evaluation strategy:
• bind that expression e1 to x
• continue to evaluate e2

let x = 2 + 3 in x – 7
--> (2 + 3) – 7
--> 5 – 7
--> -2

Example

Call-by-Name

let x = e1 in e2
Evaluation strategy:
• bind that expression e1 to x
• continue to evaluate e2

let x = work () in 7
--> 7

Call-by-name
can avoid
work sometimes:

Call-by-Name

let x = e1 in e2
Evaluation strategy:
• bind that expression e1 to x
• continue to evaluate e2

let x = loop_forever () in 7
--> 7

Call-by-name
can avoid A LOT of
work sometimes:

Call-by-Name

let x = e1 in e2
Evaluation strategy:
• bind that expression e1 to x
• continue to evaluate e2

let x = work () in x + x
--> (work ()) + (work ())

But sometimes
it does more
work than
necessary

Call-by-Name (CBN) vs Call-by-Value (CBV)

In	general:
CBV	can	be	asymptotically	faster	than	CBN	(by	exponential	factor	at	least!)
CBN	can	be	asymptotically	faster	than	CBV	(by	exponential	factor	at	least!)

However:
CBV	can	diverge	(infinite-loop)	where	CBN	terminates	but	not	vice	versa!
If	CBN	diverges,	then	ANY	strategy	diverges

Therefore:
CBN	is	the	“most	general”	strategy,	in	the	sense	that	it	terminates	as	often	
as	possible.		Though	it	definitely	isn’t	necessarily	fastest!

Call-by-Name vs Lazy

let x = e1 in e2 Lazy evaluation is like call-by-name
but it avoids repeatedly executing
e1 by using memoization – it computes
an answer once and then remembers
the result if x is ever needed a 2nd or
3rd time

let x = work () in x + x
--> ...
--> ...

The operational semantics notation
is less compact when it comes to
describing lazy computations
because we have to keep track
of the imperative state used
for memoization. So I won’t try here.

Call-by-Name vs Lazy vs Call-by-Value
In	general:
LAZY	can	be	asymptotically	faster	than	CBN.

– thanks	to	memoization – no	repeated	calls
CBN	is	never	asymptotically	faster	than	LAZY.
CBN	terminates	if-and-only-iff LAZY	terminates.
(Thus)	LAZY	is	also	a	most-general	strategy.

In practice:
• Data structures used to memoize computations take up space

– thunks hang on to data structures, making it tough to reason about
• Much optimization needed for CBN to approach CBV performance
• But laziness (“deferred, call-by-need computation”) can be useful

– we can program with selective laziness in call-by-value languages

Summary

62

By default, OCaml (and Java, C, etc) is an eager language

• but you can use thunks or “lazy” to suspend computations

• use “force” to run the computation when needed

By default, Haskell is a lazy language

• the implementers (eg: Simon Peyton Jones) would probably make it
eager by default if they had a do-over

• working with infinite data is generally more pleasant

• but difficult to reason about space and time

Lazy evaluation makes it possible to build infinite data structures.

• can be modelled using functions

• but adding refs allows memoization

END

