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Welcome Back!

2

Assignment #5 is out!  Get started!  Partners allowed!

Precept this week:  Midterm analysis
Why go?   There’s still a final!

The proofs will be more difficult! 



Before the Break

3

Design for change using the ML module system

• Structures implement new types & operations over them

• Signatures provide the interfaces

• Functors are functions from modules to modules
– they allow you to define parameterized modules

• ML also has dynamic, first-class modules



ANOTHER EXAMPLE OF FUNCTORS



A Bigger Example
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module type SET = 
sig
type elt
type set
val empty : set
val is_empty : set -> bool
val insert : elt -> set -> set
val singleton : elt -> set
val union : set -> set -> set
val intersect : set -> set -> set
val remove : elt -> set -> set
val member : elt -> set -> bool
val choose : set -> (elt * set) option
val fold : (elt -> 'a -> 'a) -> 'a -> set -> 'a  

end



Our Set Implementation is a Functor:
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module ListSet (Elt : sig type t end) 
:  (SET with elt = Elt.t) = 

struct
type elt = Elt.t
type set = elt list
let empty : set = [] 
let is_empty (s:set) = 
match xs with
| [] -> true
| _::_ -> false

let singleton (x:elt) : set = [x]
...
end

module IntListSet = ListSet(struct type t = int end)
module StringListSet = ListSet(struct type t = string end)



module ListSet (Elt : sig type t end) 
:  (SET with elt = Elt.t) = 

struct
type elt = Elt.t
type set = elt list
let empty : set = [] 
let is_empty (s:set) = 
match xs with
| [] -> true
| _::_ -> false

let singleton (x:elt) : set = [x]
...
end

module IntListSet = ListSet(struct type t = int end)
module StringListSet = ListSet(struct type t = string end)

Our Set Implementation is a Functor:
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ListSet is a 
parameterized module –

given a module 
argument for Elt, it 

generates a new 
module.



module ListSet (Elt : sig type t end) 
:  (SET with elt = Elt.t) = 

struct
type elt = Elt.t
type set = elt list
let empty : set = [] 
let is_empty (s:set) = 
match xs with
| [] -> true
| _::_ -> false

let singleton (x:elt) : set = [x]
...
end

module IntListSet = ListSet(struct type t = int end)
module StringListSet = ListSet(struct type t = string end)

Our Set Implementation is a Functor:
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This is a very simple, 
anonymous signature (it 

just specifies there’s 
some type t) for the 
argument to ListSet



module ListSet (Elt : sig type t end) 
:  (SET with elt = Elt.t) = 

struct
type elt = Elt.t
type set = elt list
let empty : set = [] 
let is_empty (s:set) = 
match xs with
| [] -> true
| _::_ -> false

let singleton (x:elt) : set = [x]
...
end

module IntListSet = ListSet(struct type t = int end)
module StringListSet = ListSet(struct type t = string end)

Our Set Implementation is a Functor:
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This is the signature of 
the resulting module –
we have a set plus the 

knowledge that the Set’s 
elt type is equal to Elt.t



module ListSet (Elt : sig type t end) 
:  (SET with elt = Elt.t) = 

struct
type elt = Elt.t
type set = elt list
let empty : set = [] 
let is_empty (s:set) = 
match xs with
| [] -> true
| _::_ -> false

let singleton (x:elt) : set = [x]
...
end

module IntListSet = ListSet(struct type t = int end)
module StringListSet = ListSet(struct type t = string end)

Our Set Implementation is a Functor:
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These are two SET 
modules that I created 

with the ListSet functor. 



module ListSet (Elt : sig type t end) 
:  (SET with elt = Elt.t) = 

struct
type elt = Elt.t
type set = elt list
let empty : set = [] 
let is_empty (s:set) = 
match xs with
| [] -> true
| _::_ -> false

let singleton (x:elt) : set = [x]
...
end

module IntListSet = ListSet(struct type t = int end)
module StringListSet = ListSet(struct type t = string end)

Our Set Implementation is a Functor:
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In this case, I’m passing 
in an anonymous 

module for Elt that 
defines t to be int.



module ListSet (Elt : sig type t end) 
:  (SET with elt = Elt.t) = 

struct
type elt = Elt.t
type set = elt list
let empty : set = [] 
let is_empty (s:set) = 
match xs with
| [] -> true
| _::_ -> false

let singleton (x:elt) : set = [x]
...
end

module IntListSet = ListSet(struct type t = int end)
module StringListSet = ListSet(struct type t = string end)

Our Set Implementation is a Functor:

12

We know that 
IntListSet.elt = int.

We know that 
IntListSet.elt = int.



module ListSet (Elt : sig type t end) 
:  (SET with elt = Elt.t) = 

struct
type elt = Elt.t
type set = elt list
let empty : set = [] 
let is_empty (s:set) = 
match xs with
| [] -> true
| _::_ -> false

let singleton (x:elt) : set = [x]
...
end

module IntListSet = ListSet(struct type t = int end)
module StringListSet = ListSet(struct type t = string end)

Our Set Implementation is a Functor:
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We know that 
IntListSet.elt = int.

We know that 
IntListSet.elt = int.

module type SET = 
sig

type elt = int
type set
val empty : set
val is_empty : set -> bool
val insert : elt -> set -> set
...

end equal to int
so we can actually 
build a set using 

insertions!



Let’s Write the Rest of the Functor
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module ListSet (Elt : sig type t end)
: (SET with elt = Elt.t) = 

struct
type elt = Elt.t
type set = elt list
let empty : set = [] 
let is_empty (s:set) = 
match xs with
| [] -> true
| _::_ -> false

let singleton (x:elt) : set = [x]
let insert (x:elt) (s:set) : set = 

if List.mem x s then s else x::s
...

end



Let’s Write the Rest of the Functor
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module ListSet (Elt : sig type t end)
:(SET with elt = Elt.t) = 

struct
type elt = Elt.t
type set = elt list
...
let insert (x:elt) (s:set) : set = 

if List.mem x s then s else x::s
let union (s1:set) (s2:set) : set = ???

end



Let’s Write the Rest of the Functor
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module ListSet (Elt : sig type t end)
: (SET with elt = Elt.t) = 

struct
type elt = Elt.t
type set = elt list
...
let insert (x:elt) (s:set) : set = 

if List.mem x s then s else x::s
let union (s1:set) (s2:set) : set = 

s1 @ s2
... 

end Ugh.  Wastes space if s1 
and s2 have duplicates.  

(Also, makes remove 
harder…)



Let’s Write the Rest of the Functor
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module ListSet (Elt : sig type t end)
: (SET with elt = Elt.t) = 

struct
type elt = Elt.t
type set = elt list
...
let insert (x:elt) (s:set) : set = 

if List.mem x s then s else x::s
let union (s1:set) (s2:set) : set = 

List.fold_right insert s1 s2
... 

end Gets rid of the 
duplicates.  Now 

remove can stop once it 
finds the element.



Let’s Write the Rest of the Functor
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module ListSet (Elt : sig type t end)
: (SET with elt = Elt.t) = 

struct
type elt = Elt.t
type set = elt list
...
let insert (x:elt) (s:set) : set = 

if List.mem x s then s else x::s
let union (s1:set) (s2:set) : set = 

List.fold_right insert s1 s2
... 

end Gets rid of the 
duplicates.  Now 

remove can stop once it 
finds the element.

But  List.mem and 
List.fold_right take time 

proportional to the 
length of the list.  So 
union is quadratic.



Let’s Write the Rest of the Functor
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module ListSet (Elt : sig type t end)
: (SET with elt = Elt.t) = 

struct
type elt = Elt.t
type set = elt list
...
let insert (x:elt) (s:set) : set = 

if List.mem x s then s else x::s
let union (s1:set) (s2:set) : set = 

List.fold_right insert s1 s2
... 

end If we knew that s1 and 
s2 were sorted we could 

use the merge from 
mergesort to compute 

the sorted union in 
linear time.



A Sorted List Set Functor
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module type COMPARATOR = sig
type t
val compare : t -> t -> Order.order

end

module SortedListSet (Elt : COMPARATOR) 
: (SET with elt = Elt.t) = 

struct ...
let rec insert (x:elt) (s:set) : set = 

match s with 
| [] -> [x]
| h::t -> (match Elt.compare x h with 

| Less -> x::s
| Eq -> s
| Greater -> h::(insert x t)) ...

end



A Sorted List Set Functor
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module type COMPARATOR = sig
type t
val compare : t -> t -> Order.order

end

module SortedListSet (Elt : COMPARATOR) 
: (SET with elt = Elt.t) = 

struct ...
let rec insert (x:elt) (s:set) : set = 

match s with 
| [] -> [x]
| h::t -> (match Elt.compare x h with 

| Less -> x::s
| Eq -> s
| Greater -> h::(insert x t)) ...

end

To support the 
sorting, I’m passing in 

a comparison 
operation to go with 

the element type.



A Sorted List Set Functor
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module SortedListSet (Elt : COMPARATOR) 
: (SET with elt = Elt.t) = 

struct ...
let rec union (s1:set) (s2:set) : set =

match s1, s2 with
| [], _ -> s2
| _, [] -> s1
| h1::t1, h2::t2 -> 

(match Elt.compare h1 h2 with 
| Less -> h1::(union t1 s2)
| Eq -> h1::(union t1 t2)
| _ -> h2::(union s1 t2))

…
end



Simpler
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module SortedListSet (Elt : COMPARATOR) 
: (SET with elt = Elt.t) = 

struct ...
let rec union (s1:set) (s2:set) : set = ...

let insert (x:elt) (s:set) : set = union [x] s ;;

end



Another Alternative:  Bit Vectors
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module BitVectorSet (Elt : sig type t 
val index : t -> int
val max : int

end) 
: (SET with elt = Elt.t) = 

struct
type set = bool array
let empty = Array.create Elt.max false
let member x s = s.(Elt.index x)
let union s1 s2 = 

Array.init Elt.max
(fun i -> s1.(i) || s2.(i))

let intersect s1 s2 = 
Array.init Elt.max
(fun i -> s1.(i) && s2.(i))

...



Another Alternative:  Binary Search Trees
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module BSTreeSet(Elt : sig type t
val compare : t -> t -> Order.order

end) : (SET with elt = Elt.t) = 
struct
type set = Leaf | Node of set * elt * set
let empty() = Leaf
let rec insert (x:elt) (s:set) : set = 

match s with
| Leaf -> Node(Leaf,x,Leaf)
| Node(left,e,right) -> 

(match Elt.compare x e with 
| Eq -> s
| Less -> Node(insert x left, e, right)
| Greater -> Node(left, e, insert x right))

let rec member (x:elt) (s:set) : bool = 
match s with
| Leaf -> false
| Node(left,e,right) -> 

(match Elt.compare x e with
| Eq -> true
| Less -> member x left
| Greater -> member x right)

... end



SIGNATURE SUBTYPING



Subtyping
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A module matches any interface as long as it provides at least 
the definitions (of the right type) specified in the interface.

But as we saw earlier, the module can have more stuff.
– e.g., the deq function in the Queue modules

Basic principle of subtyping for modules:
– wherever you are expecting a module with signature S, you can 

use a module with signature S’, as long as all of the stuff in S
appears in S’.  

– That is, S’ is a bigger interface.



Groups versus Rings
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module type GROUP =
sig
type t
val zero : t
val add : t -> t -> t

end
module type RING = 
sig
type t
val zero : t
val one  : t
val add  : t -> t -> t
val mul : t -> t -> t

end
module IntGroup : GROUP = IntRing
module FloatGroup : GROUP = FloatRing
module BoolGroup : GROUP = BoolRing



Groups versus Rings
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module type GROUP =
sig
type t
val zero : t
val add : t -> t -> t

end
module type RING = 
sig
type t
val zero : t
val one  : t
val add  : t -> t -> t
val mul : t -> t -> t

end
module IntGroup : GROUP = IntRing
module FloatGroup : GROUP = FloatRing
module BoolGroup : GROUP = BoolRing

RING is a sub-type 
of GROUP.



module type GROUP =
sig
type t
val zero : t
val add : t -> t -> t

end
module type RING = 
sig
type t
val zero : t
val one  : t
val add  : t -> t -> t
val mul : t -> t -> t

end
module IntGroup : GROUP = IntRing
module FloatGroup : GROUP = FloatRing
module BoolGroup : GROUP = BoolRing

Groups versus Rings
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There are more 
modules matching 

the GROUP 
interface than the 

RING one.



module type GROUP =
sig
type t
val zero : t
val add : t -> t -> t

end
module type RING = 
sig
type t
val zero : t
val one  : t
val add  : t -> t -> t
val mul : t -> t -> t

end
module IntGroup : GROUP = IntRing
module FloatGroup : GROUP = FloatRing
module BoolGroup : GROUP = BoolRing

Groups versus Rings
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Any module 
expecting a 

GROUP can be 
passed a RING.



Groups versus Rings
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module type GROUP =
sig
type t
val zero : t
val add : t -> t -> t

end
module type RING = 
sig
include GROUP
val one  : t
val mul : t -> t -> t

end
module IntGroup : GROUP = IntRing
module FloatGroup : GROUP = FloatRing
module BoolGroup : GROUP = BoolRing

The include primitive 
is like cutting-and-

pasting the signature’s 
content here.



module type GROUP =
sig
type t
val zero : t
val add : t -> t -> t

end
module type RING = 
sig
include GROUP
val one  : t
val mul : t -> t -> t

end
module IntGroup : GROUP = IntRing
module FloatGroup : GROUP = FloatRing
module BoolGroup : GROUP = BoolRing

Groups versus Rings
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That ensures we 
will be a sub-type 

of the included 
signature.



ASSIGNMENT #5
CODE WALKTHROUGH



MODULE EVALUATION



The Structure of ML

An ML program is a sequence of modules.

module m1 = module expression ...
module m2 = module expression ...
module m3 = module expression ...

To evaluate an ML program, we must evaluate this sequence of 
module expressions.  How?



Evaluating the contents of a module
A module expression is a series of declarations

– How does one evaluate a type declaration?  We’ll ignore it.
– How does one evaluate a let declaration?

How does one evaluate an entire structure?
– evaluate each declaration in order from first to last

let x = e
evaluate the expression e
bind the value to x



Evaluating the contents of a module

let x = 326

let main () = 
Printf.printf “Hello COS %d\n” x

let foo = 
Printf.printf “Byeee!\n”

let _ = 
main ()

main.ml



Evaluating the contents of a module

main.ml

Step 1: 
evaluate the 1st declaration

but the RHS (326) 
is already a value so there’s
nothing to do except
remember that x is bound
to the integer 326

let x = 326

let main () = 
Printf.printf “Hello COS %d\n” x

let foo = 
Printf.printf “Byeee!\n”

let _ = 
main ()



Evaluating the contents of a module

main.ml

Step 2: 
evaluate the 2nd declaration
this is slightly trickier:

let main () = ...

really declares a function.
It’s equivalent to:

let main = fun () -> ...

“fun () -> ...” is already
a value, like 326.
So there’s nothing to do again.

let x = 326

let main () = 
Printf.printf “Hello COS %d\n” x

let foo = 
Printf.printf “Byeee!\n”

let _ = 
main ()



Evaluating the contents of a module

main.ml
Step 3: 
evaluate the 3rd declaration

let foo = ...

evaluation of this expression
has an effect – it prints 
out “Byeee!\n” to the
terminal.

the resulting value is ()
which is bound to foo

let x = 326

let main () = 
Printf.printf “Hello COS %d\n” x

let foo = 
Printf.printf “Byeee!\n”

let _ = 
main ()



Evaluating the contents of a module

main.ml
Step 4: 
evaluate the 4th declaration

let _ = ...

evaluation main ()
causes another effect.

“Hello ...” is printed

the resulting value is () again.
the “_” indicates we don’t
care to bind () to any variable

let x = 326

let main () = 
Printf.printf “Hello COS %d\n” x

let foo = 
Printf.printf “Byeee!\n”

let _ = 
main ()



A Variation

main.ml

This evaluates exactly
the same way

We just replaced

let main () = ...

with the equivalent

let main = fun () -> ...

let x = 326

let main = 
(fun () ->

Printf.printf “Hello COS %d\n” x)

let foo = 
Printf.printf “Byeee!\n”

let _ = 
main ()



A Variation

main.ml
This rewrite does
something different.

On the 2nd step, it prints
because that’s what evaluating
this expression does:

Printf.printf “Hello COS %d\n” x;
(fun () -> ())

The result of the expression is:

fun () -> ()

which is bound to main. 
This is a pretty silly function.

let x = 326

let main = 
Printf.printf “Hello COS %d\n” x;
(fun () -> ())

let foo = 
Printf.printf “Byeee!\n”

let _ = 
main ()



A Variation
main.ml

module C326 =
struct
let x = 326

let main = 
Printf.printf “Hello COS %d\n” x;
(fun () -> ())

let foo = Printf.printf “Byeee!\n”

let _ =  main ()
end

let _ =
Printf.printf "Done\n"

Now what happens?



A Variation
main.ml

module C326 =
struct
let x = 326

let main = 
Printf.printf “Hello COS %d\n” x;
(fun () -> ())

let foo = Printf.printf “Byeee!\n”

let _ =  main ()
end

let done =
Printf.printf "Done\n"

Now what happens?

The entire file contains 2 decls:
• module C326 = ...
• let done = ...

We execute both of them in 
order.



A Variation
main.ml

module C326 =
struct
let x = 326

let main = 
Printf.printf “Hello COS %d\n” x;
(fun () -> ())

let foo = Printf.printf “Byeee!\n”

let _ =  main ()
end

let done =
Printf.printf "Done\n"

Now what happens?

The entire file contains 2 decls:
• module C326 = ...
• let done = ...

We execute both of them in 
order.

Executing the module declaration
has the effect of executing
every declaration within it
in order.

Executing let done = ...
is as before



A Variation
main.ml

module C326 =
struct
exception Unimplemented
let x = raise Unimplemented

let main = 
Printf.printf “Hello COS %d\n” x;
(fun () -> ())

let foo = Printf.printf “Byeee!\n”

let _ =  main ()
end

let done =
Printf.printf "Done\n"

Now what happens?



A Variation
main.ml

module C326 =
struct
exception Unimplemented
let x = raise Unimplemented

let main = 
Printf.printf “Hello COS %d\n” x;
(fun () -> ())

let foo = Printf.printf “Byeee!\n”

let _ =  main ()
end

let done =
Printf.printf "Done\n"

Now what happens?

The entire file contains 2 decls:
• module C326 = ...
• let done = ...

We execute both of them in 
order.

Executing the module declaration
has the effect of executing
every declaration within it
in order.

The first declaration within
it raises an exception which is
not caught!  That is the only 
result.



A Variation
main.ml

module type S = 
sig 
type t = int
val x : t

end

module F (M:S) : S = 
struct
let wow = Printf.printf “%d\n” M.x
let t = M.t
let x = M.x

end

let done = Printf.printf "Done\n"

Now what happens?

The entire file contains 3 decls:
• module type = ...
• module F (M:S) : S = ...
• let done = ...



A Variation
main.ml

module type S = 

sig 
type t = int

val x : t

end

module F (M:S) : S = 

struct
let wow = Printf.printf “%d\n” M.x

let t = M.t

let x = M.x

end

let done = Printf.printf "Done\n"

The signature declaration has no 

(run-time) effect.

The functor declaration is

like declaring a function value.

The body of the functor is not

executed until it is applied.

The functor is not applied here

so M.x is not printed.

Only “Done\n” is printed.



A Variation
main.ml
module type S = sig ... end

module F (M:S) : S = 
struct
let wow = Printf.printf “%d\n” M.x
let t = M.t
let x = M.x

end

let module M1 = F (
struct 

type t = int
val x = 3

end)

let done = Printf.printf "Done\n"

What happens now?



A Variation
main.ml
module type S = sig ... end

module F (M:S) : S = 
struct
let wow = Printf.printf “%d\n” M.x
let t = M.t
let x = M.x

end

let module M1 = F (
struct 

type t = int
val x = 3

end)

let done = Printf.printf "Done\n"

What happens now?

When M1 is declared,
F is applied to an argument.

This creates a new structure and 
its components are executed.

This has the effect of printing 3.



FIRST CLASS MODULES



Limitations of the Module language
The module language contains:
• structures
• functions from structures to structures

This is like a programming with just typed functions and simple 
data d.  Possible expressions:

d
f d
f (f d)
f (d, f d)
etc



But there is no dynamic decision making

We can’t do this:

module Set = 
if parse_command_line () = ”big_set” then
HashSet

else
ListSet



First-class Modules
There is a way of including modules in the expression language.
And then to get it back out.

module type Box = sig val x : int end

module Three : Box = struct let x = 3 end
module Four : Box = struct let x = 4 end

let three = (module Three : Box)
let four = (module Four : Box)



First-class Modules
There is a way of including modules in the expression language.
And then to get it back out.

module type Box = sig val x : int end

module Three : Box = struct let x = 3 end
module Four : Box = struct let x = 4 end

let three = (module Three : Box)
let four = (module Four : Box)

three : module Box
three and four are ordinary values
that can be passed around
like other ordinary values



First-class Modules
... and then getting them back out ....

module type Box = sig val x : int end

module Three : Box = struct let x = 3 end
module Four : Box = struct let x = 4 end

let three = (module Three : Box)
let four = (module Four : Box)

let three_or_four : (module Box) =
if command_line () then three else four

module Three_or_Four = (val three_or_four : Box)

keyword val brings it back into the
module language



DESIGN CONSIDERATIONS
FROM REAL WORLD OCAML



Expose Concrete Types Rarely



type ‘a tree = 
Leaf 

| Node of ‘a * ‘a tree * ‘a tree 

match t with
Leaf -> ...

| Node (v, left, right) -> ...



type ‘a tree

val empty : ‘a tree
val node : ‘a -> ‘a tree -> ‘a tree -> ‘a tree
val top   : ‘a tree -> (‘a * ‘a tree * ‘a tree) option

match top t with
None -> ...

| Some (v, left, right) -> ...



type ‘a tree

type ‘a view = 
Empty  

| Single of ‘a
| Children of ‘a tree * ‘a tree

val split : ‘a tree -> ‘a view

match split t with
Empty -> ...

| Single v -> ...
| Children (t1, t2) -> ...



Design for Call Sites



Use techniques that make it easier to read uses of your module, not
just the signature



Use techniques that make it easier to read uses of your module, not
just the signature

Basic rules:  Choose good names for types, record labels, values

Good names aren’t always long:  fun x -> x * 2

Rule of thumb:  
• names with small scope are short
• names with large scope are long (eg: names in module interfaces)

Tradeoff:  
• long, descriptive names for uncommon values
• shorter names for common values (“map”)



Use techniques that make it easier to read uses of your module, not
just the signature



Use techniques that make it easier to read uses of your module, not
just the signature

substring “0123456” 2 3



Use techniques that make it easier to read uses of your module, not
just the signature

substring “0123456” 2 3

substring “0123456” ~pos:2 ~len:3

vs



Defining functions with labelled arguments

let divide ~num ~denom = num / denom

val divide : num:int -> denom:int -> int



Optional Arguments

let concat ?sep x y = 
let sep = 
match sep with
None -> "" 

| Some x -> x 
in
x ^ sep ^ y 

val concat : ?sep:string -> string -> string -> string

concat "foo" "bar”;;

concat ~sep:":" "foo" "bar”;;



Optional Arguments

let concat ?sep x y = 
let sep = 
match sep with
None -> "" 

| Some x -> x 
in
x ^ sep ^ y 

let concat ?(sep="") x y = x ^ sep ^ y 

more concise (”syntactic sugar”)



Optional Arguments

let concat ?(sep="") x y = x ^ sep ^ y 

Pitfalls of optional arguments:
• Users might not realize there is an optional argument
• Easy to accidentally get a “bad default”

Rules of thumb:
• Avoid in functions that are rarely used
• Avoid in functions internal to a module
• Avoid in situations where you have to “think carefully” about 

that argument
• Avoid just to save a couple of characters of typing
• Use it to make your code clearer

More on labelled and optional arguments:  Real World OCaml Chap 2



Create Uniform Interfaces



Jane St Core
An alternate to the standard core libraries:

More features
More uniform:
• a module for every type: Int, Float, ...

– useful for instantiating functors
• the primary type in a module is called t: Int.t
• put t first:

– the functions that take t should take t first:
• functions that routinely throw an exception end in _exn

– otherwise, return an option 

opam install core



Interfaces before Implementations



When writing functions:
• start with the type of the function
• the types drive the structure of the code

• eg: 1 case per element of a data type

When writing modules:
• start with the type of the module (the signature)
• is there a primary type t?
• what accessors do you need?  what types?
• interfaces allow you to flesh out a design

Interfaces before Implementations



DESIGN CONSIDERATIONS:
REPRESENTATION INVARIANTS



Efficient Data Structures
In 226, you learned about all kinds of clever data structures:
• red-black trees
• union-find sets
• tries, ...

Not just any tree is a red-black tree. In order to be a red-black
tree, you need to obey several invariants:
• keys are in order in the tree
• # of black nodes to the root is constant along all paths,...

Operations such as look-up, depend upon those invariants to be 
correct.  All inputs to look-up must satisfy the red-black invariant

Such invariants are often called representation invariants



A Signature for Sets
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module type SET = 
sig
type ‘a set
val empty : ‘a set
val mem : ‘a -> ‘a set -> bool
val add : ‘a -> ‘a set -> ‘a set
val rem : ‘a -> ‘a set -> ‘a set
val size : ‘a set -> int
val union : ‘a set -> ‘a set -> ‘a set
val inter : 'a set -> ‘a set -> 'a set 

end



Sets as Lists
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module Set1 : SET = 
struct
type ‘a set = ‘a list
let empty = []
let mem = List.mem
let add x l = x :: l
let rem x l = List.filter ((<>) x) l
let rec size l =
match l with
| [] -> 0
| h::t -> size t + (if mem h t then 0 else 1) 

let union l1 l2 = l1 @ l2
let inter l1 l2 = List.filter (fun h -> mem h l2) l1 

end

Very slow in many ways!



Sets as Lists without Duplicates
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module Set2 : SET = 
struct
type ‘a set = ‘a list
let empty = []
let mem = List.mem
(* add:  check if already a member *)
let add x l = if mem x l then l else x::l
let rem x l = List.filter ((<>) x) l
(* size:  list length is number of unique elements *)
let size l = List.length l
(* union: discard duplicates *)
let union l1 l2 = List.fold_left

(fun a x -> if mem x l2 then a else x::a) l2 l1
let inter l1 l2 = List.filter (fun h -> mem h l2) l1

end



Back to Sets
The interesting operation:

Why does this work?  It depends on an invariant:  

All lists supplied as an argument contain no duplicates.

A representation invariant is a property that holds of all values of 
a particular (abstract) type.

(* size:  list length is number of unique elements *)
let size (l:’a set) : int = List.length l 



Implementing Representation Invariants

For lists with no duplicates:

(* checks that a list has no duplicates *)
let rec inv (s : 'a set) : bool =

match s with
[] -> true

| hd::tail -> not (mem hd tail) && inv tail

let rec check (s : ‘a set) (m:string) : ‘a set =
if inv s then
s

else
failwith m



Debugging with Representation Invariants

(* size:  list length is number of unique elements *)
let size (s:’a set) : int = 
ignore (check s “size:  bad set input”);
List.length s

As a precondition on input sets:



Debugging with Representation Invariants

(* size:  list length is number of unique elements *)
let size (s:’a set) : int = 
ignore (check s “size:  bad set input”);
List.length s

As a precondition on input sets:

(* add x to set s *)
let add x s = 
let s = if mem x s then s else x::s in
check s “add: bad set output”

As a postcondition on output sets:



A Signature for Sets
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module type SET = 
sig
type ‘a set
val empty : ‘a set
val mem : ‘a -> ‘a set -> bool
val add : ‘a -> ‘a set -> ‘a set
val rem : ‘a -> ‘a set -> ‘a set
val size : ‘a set -> int
val union : ‘a set -> ‘a set -> ‘a set
val inter : 'a set -> ‘a set -> 'a set 

end

Suppose we check all the red values satisfy our invariant leaving the module,
do we have to check the blue values entering the module satisfy our invariant?



Representation Invariants Pictorially

Client Code Abstract Set Data Type

empty

add

[1;2]
type t

[ ]

type t
[1;2]

type t
[1]

size

[1;1;1]
type int list

check

check

assume

When debugging, we can check our invariant each time we construct a value
of abstract type.  We then get to assume the invariant on input to the module.



Representation Invariants Pictorially

Client Code Abstract Set Data Type

empty

add

[1;2]
type t

[ ]

type t
[1;2]

type t
[1]

size

[1;1;1]
type int list

check

check

assume

When proving, we prove our invariant holds each time we construct a value
of abstract type and release it to the client.  We get to assume the invariant 
holds on input to the module.

Such a proof technique is highly modular:  Independent of the client!



Repeating myself

You may 

assume the invariant inv(i) for module inputs i with abstract type 

provided you 

prove the invariant inv(o) for all module outputs o with abstract type



Design with Representation Invariants
A key to writing correct code is understanding your own 
invariants very precisely

Try to write down key invariants
– if you write them down then you can be sure you know what 

they are yourself!
– you may find as you write them down that they were a little 

fuzzier than you had thought
– great documentation for others
– great debugging tool
– you’ll need them to prove to yourself that your code is correct



SUMMARY



Summary

94

OCaml’s linguistic mechanisms include:
– signatures (interfaces)
– structures (implementations)
– functors (functions from modules to modules)
– first-class modules (modules as expressions

We can use the module system
– provides support for name-spaces
– hiding information (types, local value definitions)
– code reuse (via functors, reuseable interfaces, reuseable modules)

There’s lots, lots, lots more to learn about how to design collections 
of modules effective.  Real World OCaml has some good hints. 


