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Last Time
Tail-recursive functions

• the recursive call is the last thing they do in a function

Continuation-passing style
• Any function can be made tail-recursive by passing it an extra 

argument – a continuation
• Bottle up the stuff you might do after returning from a 

function and make it into a "continuation" 
• Many OS interfaces use continuations too: they are called

“call backs” in that context



An Example

let rec sum (l:int list) : int =
match l with
[] -> 0

| hd::tail -> hd + sum tail

type cont = int -> int

let rec sum_cont (l:int list) (k:cont): int =
match l with
[] -> k 0

| hd::tail -> sum_cont tail (fun s -> k (hd + s)) 

let sum2 (l:int list) : int = sum_cont l (fun s -> s)

stuff that happens
after the recursive
call

Call continuation
as last thing you do add continuation argument

last thing sum_cont
does is to call this

Do your last thing:
hd +

after summing tail.
Then do k!



CORRECTNESS OF A CPS 
TRANSFORM

4



Are the two functions the same?

Here, it is really pretty tricky to be sure you've done it right if you 
don't prove it.  Let's try to prove this theorem and see what 
happens:

let rec sum (l:int list) : int =
match l with
[] -> 0

| hd::tail -> hd + sum tail

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
match l with
[] -> k 0

| hd::tail -> sum_cont tail (fun s -> k (hd + s)) 

let sum2 (l:int list) : int = sum_cont l (fun s -> s)

for all l:int list, 
sum_cont l (fun x -> x) == sum l
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Attempting a Proof

for all l:int list, sum_cont l (fun s -> s) == sum l

Proof: By induction on the structure of the list l.

case l = []
...

case: hd::tail
IH: sum_cont tail (fun s -> s) == sum tail
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Attempting a Proof

for all l:int list, sum_cont l (fun s -> s) == sum l

Proof: By induction on the structure of the list l.

case l = []
...

case: hd::tail
IH: sum_cont tail (fun s -> s) == sum tail

sum_cont (hd::tail) (fun s -> s)                
==
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let rec sum_cont (l:int list) (k:cont): int =
match l with
[] -> k 0

| hd::tail -> sum_cont tail (fun s -> k (hd + s)) 



Attempting a Proof

for all l:int list, sum_cont l (fun s -> s) == sum l

Proof: By induction on the structure of the list l.

case l = []
...

case: hd::tail
IH: sum_cont tail (fun s -> s) == sum tail

sum_cont (hd::tail) (fun s -> s)                
== sum_cont tail (fn s' -> (fn s -> s) (hd + s'))  (eval)
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let rec sum_cont (l:int list) (k:cont): int =
match l with
[] -> k 0

| hd::tail -> sum_cont tail (fun s -> k (hd + s)) 



Attempting a Proof

for all l:int list, sum_cont l (fun s -> s) == sum l

Proof: By induction on the structure of the list l.

case l = []
...

case: hd::tail
IH: sum_cont tail (fun s -> s) == sum tail

sum_cont (hd::tail) (fun s -> s)                
== sum_cont tail (fn s' -> (fn s -> s) (hd + s'))  (eval)
== sum_cont tail (fn s' -> hd + s')                (eval)
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let rec sum_cont (l:int list) (k:cont): int =
match l with
[] -> k 0

| hd::tail -> sum_cont tail (fun s -> k (hd + s)) 



Need to Generalize the Theorem and IH

for all l:int list, sum_cont l (fun s -> s) == sum l

Proof: By induction on the structure of the list l.

case l = []
...

case: hd::tail
IH: sum_cont tail (fun s -> s) == sum tail

sum_cont (hd::tail) (fun s -> s)                
== sum_cont tail (fn s' -> (fn s -> s) (hd + s'))  (eval)
== sum_cont tail (fn s' -> hd + s')                (eval)

== darn!

we'd like to use the IH, but we can't!
we might like:

sum_cont tail (fn s' -> hd + s') == sum tail

... but that's not even true

not the identity continuation
(fun s -> s) like the IH requires
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Need to Generalize the Theorem and IH

for all l:int list, 
for all k:int->int, sum_cont l k == k (sum l)
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Need to Generalize the Theorem and IH

for all l:int list, 
for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = []

must prove:  for all k:int->int, sum_cont [] k == k (sum [])
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Need to Generalize the Theorem and IH

for all l:int list, 
for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = []

must prove:  for all k:int->int, sum_cont [] k == k (sum [])

pick an arbitrary k:
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for all l:int list, 
for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = []

must prove:  for all k:int->int, sum_cont [] k == k (sum [])

pick an arbitrary k:

sum_cont [] k 
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Need to Generalize the Theorem and IH



Need to Generalize the Theorem and IH

for all l:int list, 
for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = []

must prove:  for all k:int->int, sum_cont [] k == k (sum [])

pick an arbitrary k:

sum_cont [] k 
== match [] with [] -> k 0 | hd::tail -> ...    (eval)
== k 0 (eval)
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Need to Generalize the Theorem and IH

for all l:int list, 
for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = []

must prove:  for all k:int->int, sum_cont [] k == k (sum [])

pick an arbitrary k:

sum_cont [] k 
== match [] with [] -> k 0 | hd::tail -> ... (eval)
== k 0 (eval)

== k (sum [])
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Need to Generalize the Theorem and IH

for all l:int list, 
for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = []

must prove:  for all k:int->int, sum_cont [] k == k (sum [])

pick an arbitrary k:

sum_cont [] k 
== match [] with [] -> k 0 | hd::tail -> ... (eval)
== k 0 (eval)

== k (0) (eval, reverse)
== k (match [] with [] -> 0 | hd::tail -> ...) (eval, reverse)
== k (sum [])

case done!

17



Need to Generalize the Theorem and IH
for all l:int list, 
for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = [] ===> done!

case l = hd::tail

IH:  for all k':int->int, sum_cont tail k' == k' (sum tail)

Must prove:  for all k:int->int, sum_cont (hd::tail) k == k (sum (hd::tail))
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Need to Generalize the Theorem and IH
for all l:int list, 
for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = [] ===> done!

case l = hd::tail

IH:  for all k':int->int, sum_cont tail k' == k' (sum tail)

Must prove:  for all k:int->int, sum_cont (hd::tail) k == k (sum (hd::tail))

Pick an arbitrary k,

sum_cont (hd::tail) k
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Need to Generalize the Theorem and IH
for all l:int list, 
for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = [] ===> done!

case l = hd::tail

IH:  for all k':int->int, sum_cont tail k' == k' (sum tail)

Must prove:  for all k:int->int, sum_cont (hd::tail) k == k (sum (hd::tail))

Pick an arbitrary k,

sum_cont (hd::tail) k
== sum_cont tail (fun s -> k (hd + s))     (eval)
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Need to Generalize the Theorem and IH
for all l:int list, 
for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = [] ===> done!

case l = hd::tail

IH:  for all k':int->int, sum_cont tail k' == k' (sum tail)

Must prove:  for all k:int->int, sum_cont (hd::tail) k == k (sum (hd::tail))

Pick an arbitrary k,

sum_cont (hd::tail) k
== sum_cont tail (fun s -> k (hd + s))     (eval)

== (fun s -> k (hd + s)) (sum tail)        (IH with IH quantifier k'
replaced with (fun s -> k (hd+s))

21



Need to Generalize the Theorem and IH
for all l:int list, 
for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = [] ===> done!

case l = hd::tail

IH:  for all k':int->int, sum_cont tail k' == k' (sum tail)

Must prove:  for all k:int->int, sum_cont (hd::tail) k == k (sum (hd::tail))

Pick an arbitrary k,

sum_cont (hd::tail) k
== sum_cont tail (fun s -> k (hd + s))     (eval)

== (fun s -> k (hd + s)) (sum tail)        (IH with IH quantifier k'
replaced with (fun s -> k (hd+s))

== k (hd + (sum tail))                     (eval)
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Need to Generalize the Theorem and IH
for all l:int list, 
for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = [] ===> done!

case l = hd::tail

IH:  for all k':int->int, sum_cont tail k' == k' (sum tail)

Must prove:  for all k:int->int, sum_cont (hd::tail) k == k (sum (hd::tail))

Pick an arbitrary k,

sum_cont (hd::tail) k
== sum_cont tail (fun s -> k (hd + s))     (eval)

== (fun s -> k (hd + s)) (sum tail)        (IH with IH quantifier k'
replaced with (fun s -> k (hd+s))

== k (hd + (sum tail))                     (eval)
== k (sum (hd::tail))                      (eval sum, reverse)

case done!
QED! 
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Finishing Up
Ok, now what we have is a proof of this theorem:

But what we wanted was:

for all l:int list, 
for all k:int->int, sum_cont l k == k (sum l)

24

for all l:int list, 
sum_cont l (fun s -> s) == sum l



Finishing Up
Ok, now what we have is a proof of this theorem:

But what we wanted was:

We can use that general theorem to get what we really want:

for all l:int list, 
for all k:int->int, sum_cont l k == k (sum l)

for all l:int list, 
sum2 l 

== sum_cont l (fun s -> s)     (by eval sum2)
== (fun s -> s) (sum l) (by theorem, instantiating k with (fun s -> s)
== sum l (by eval, since sum l valuable) 
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for all l:int list, 
sum_cont l (fun s -> s) == sum l

Theorem 2:



WHAT JUST HAPPENED?
GENERALIZING A THEOREM



sum vs sum_cont

let rec sum (l:int list) : int =
match l with
[] -> 0

| hd::tail -> hd + sum tail

type cont = int -> int

let rec sum_cont (l:int list) (k:cont): int =
match l with
[] -> k 0

| hd::tail -> sum_cont tail (fun s -> k (hd + s)) 

Theorem we tried to prove directly:
for all l:int list, 
sum_cont l (fun s -> s) == sum l



sum vs sum_cont

let rec sum (l:int list) : int =
match l with
[] -> 0

| hd::tail -> hd + sum tail

type cont = int -> int

let rec sum_cont (l:int list) (k:cont): int =
match l with
[] -> k 0

| hd::tail -> sum_cont tail (fun s -> k (hd + s)) 

It didn't work because sum_cont does not call
itself recursively using (fun s -> s).

To reason about recursive calls, we need to use
the induction hypothesis, but we aren't allowed to here.

Theorem we tried to prove directly:
for all l:int list, 
sum_cont l (fun s -> s) == sum l



sum vs sum_cont

let rec sum (l:int list) : int =
match l with
[] -> 0

| hd::tail -> hd + sum tail

type cont = int -> int

let rec sum_cont (l:int list) (k:cont): int =
match l with
[] -> k 0

| hd::tail -> sum_cont tail (fun s -> k (hd + s)) 

It didn't work because sum_cont does not call
itself recursively using (fun s -> s).

To reason about recursive calls, we need to use
the induction hypothesis, but we aren't allowed to here.

Need to come up with IH that characterizes recursive calls

Theorem we tried to prove directly:
for all l:int list, 
sum_cont l (fun s -> s) == sum l



sum vs sum_cont

let rec sum (l:int list) : int =
match l with
[] -> 0

| hd::tail -> hd + sum tail

type cont = int -> int

let rec sum_cont (l:int list) (k:cont): int =
match l with
[] -> k 0

| hd::tail -> sum_cont tail (fun s -> k (hd + s)) 

Theorem we tried to prove directly:
for all l:int list, 
sum_cont l (fun s -> s) == sum l

New Theorem Attempt #1:
for all l:int list, 
for all k:int -> int,
sum_cont l k == sum l

key idea:  replace one specific value
(the id function in this case)
with all possible values



sum vs sum_cont

let rec sum (l:int list) : int =
match l with
[] -> 0

| hd::tail -> hd + sum tail

type cont = int -> int

let rec sum_cont (l:int list) (k:cont): int =
match l with
[] -> k 0

| hd::tail -> sum_cont tail (fun s -> k (hd + s)) 

Theorem we tried to prove directly:
for all l:int list, 
sum_cont l (fun s -> s) == sum l

New Theorem Attempt #1:
for all l:int list, 
for all k:int -> int,
sum_cont l k == sum l

key idea:  replace one specific value
(the id function in this case)
with all possible values

specific

general



sum vs sum_cont

let rec sum (l:int list) : int =
match l with
[] -> 0

| hd::tail -> hd + sum tail

type cont = int -> int

let rec sum_cont (l:int list) (k:cont): int =
match l with
[] -> k 0

| hd::tail -> sum_cont tail (fun s -> k (hd + s)) 

Theorem we tried to prove directly:
for all l:int list, 
sum_cont l (fun s -> s) == sum l

New Theorem Attempt #1:
for all l:int list, 
for all k:int -> int,
sum_cont l k == sum l

But the theorem is false!  :-(
counter-example, choose: 
k = (fun x -> x + 1)



sum vs sum_cont

let rec sum (l:int list) : int =
match l with
[] -> 0

| hd::tail -> hd + sum tail

type cont = int -> int

let rec sum_cont (l:int list) (k:cont): int =
match l with
[] -> k 0

| hd::tail -> sum_cont tail (fun s -> k (hd + s)) 

Theorem we tried to prove directly:
for all l:int list, 
sum_cont l (fun s -> s) == sum l

New Theorem Attempt #2:
for all l:int list, 
for all k:int -> int,
sum_cont l k == k (sum l)

Success!



A Possible Proof Strategy
Look at the recursive calls made within your function(s).
• If the arguments (other than the one you are doing induction 

on) are unchanged, you may have success with simple induction

• If they are different, you may have to search for a more general 
theorem that allows you to conclude something useful about 
those recursive calls.

let rec f (l:int list) (x: ...) (y:...) : int =
match l with
[] ->  ...

| hd::tail -> ... (f tail x y)

let rec f (l:int list) (x: ...) (y:...) : int =
match l with
[] ->  ...

| hd::tail -> ... (f tail (complex1) (complex2))



Another Example

type exp =
Int of int

| Add of exp * exp

let rec eval1 (e:exp) : int =
match e with

Int i -> i
| Add (e1, e2) -> (eval1 e1) + (eval1 e2)

let rec eval2 (e:exp) (n:int) : int =
match e with

Int i -> i + n
| Add (e1, e2) -> eval2 e1 (eval2 e2 n)

Theorem:
for all e:exp, 
eval1 e == eval2 e 0



Another Example

type exp =
Int of int

| Add of exp * exp

let rec eval1 (e:exp) : int =
match e with

Int i -> i
| Add (e1, e2) -> (eval1 e1) + (eval1 e2)

let rec eval2 (e:exp) (n:int) : int =
match e with

Int i -> i + n
| Add (e1, e2) -> eval2 e1 (eval2 e2 n)

Theorem:
for all e:exp, 
eval1 e == eval2 e 0



Another Example

type exp =
Int of int

| Add of exp * exp

let rec eval1 (e:exp) : int =
match e with

Int i -> i
| Add (e1, e2) -> (eval1 e1) + (eval1 e2)

let rec eval2 (e:exp) (n:int) : int =
match e with

Int i -> i + n
| Add (e1, e2) -> eval2 e1 (eval2 e2 n)

Theorem:
for all e:exp, 
eval1 e == eval2 e 0

What is going to go wrong if we try induction on the
structure of e directly?



Another Example

type exp =
Int of int

| Add of exp * exp

let rec eval1 (e:exp) : int =
match e with

Int i -> i
| Add (e1, e2) -> (eval1 e1) + (eval1 e2)

let rec eval2 (e:exp) (n:int) : int =
match e with

Int i -> i + n
| Add (e1, e2) -> eval2 e1 (eval2 e2 n)

Theorem:
for all e:exp, 
eval1 e == eval2 e 0

In the case when e is Add(e1, e2), we will need to
reason that eval2 e1 (eval2 e2 0) == ??? involving eval1

But we won't be able to use IH.  We'll have no way
to reason about eval2 e1 (...) when (...) is not 0.



Another Example

type exp =
Int of int

| Add of exp * exp

let rec eval1 (e:exp) : int =
match e with

Int i -> i
| Add (e1, e2) -> (eval1 e1) + (eval1 e2)

let rec eval2 (e:exp) (n:int) : int =
match e with

Int i -> i + n
| Add (e1, e2) -> eval2 e1 (eval2 e2 n)

Theorem:
for all e:exp, 
eval1 e == eval2 e 0

Suggestions?



Another Example

type exp =
Int of int

| Add of exp * exp

let rec eval1 (e:exp) : int =
match e with

Int i -> i
| Add (e1, e2) -> (eval1 e1) + (eval1 e2)

let rec eval2 (e:exp) (n:int) : int =
match e with

Int i -> i + n
| Add (e1, e2) -> eval2 e1 (eval2 e2 n)

Theorem:
for all e:exp, 
eval1 e == eval2 e 0

Suggestions?

We will need to reason about eval2 e1 (...)
and to relate it to eva11 e1 somehow.
What is the relationship?



Another Example

type exp =
Int of int

| Add of exp * exp

let rec eval1 (e:exp) : int =
match e with

Int i -> i
| Add (e1, e2) -> (eval1 e1) + (eval1 e2)

let rec eval2 (e:exp) (n:int) : int =
match e with

Int i -> i + n
| Add (e1, e2) -> eval2 e1 (eval2 e2 n)

Strategy: Introduce a new Lemma:
for all e:exp, for all n:int
(eval1 e) + n == eval2 e n

we replaced a specific
value (0) with something
more general – any integer n!



Another Example

type exp =
Int of int

| Add of exp * exp

let rec eval1 (e:exp) : int =
match e with

Int i -> i
| Add (e1, e2) -> (eval1 e1) + (eval1 e2)

let rec eval2 (e:exp) (n:int) : int =
match e with

Int i -> i + n
| Add (e1, e2) -> eval2 e1 (eval2 e2 n)

Strategy: Introduce a new Lemma:
for all e:exp, for all n:int
(eval1 e) + n == eval2 e n

Proof: By induction on the structure of e.



Another Example

type exp =
Int of int

| Add of exp * exp

let rec eval1 (e:exp) : int =
match e with

Int i -> i
| Add (e1, e2) -> (eval1 e1) + (eval1 e2)

let rec eval2 (e:exp) (n:int) : int =
match e with

Int i -> i + n
| Add (e1, e2) -> eval2 e1 (eval2 e2 n)

Strategy: Introduce a new Lemma:
for all e:exp, for all n:int
(eval1 e) + n == eval2 e n

Proof: By induction on the structure of e.
case: e = int i



Another Example

type exp =
Int of int

| Add of exp * exp

let rec eval1 (e:exp) : int =
match e with

Int i -> i
| Add (e1, e2) -> (eval1 e1) + (eval1 e2)

let rec eval2 (e:exp) (n:int) : int =
match e with

Int i -> i + n
| Add (e1, e2) -> eval2 e1 (eval2 e2 n)

Strategy: Introduce a new Lemma:
for all e:exp, for all n:int
(eval1 e) + n == eval2 e n

Proof: By induction on the structure of e.
case: e = int i

eval1 (Int i) + n(LHS)



Another Example

type exp =
Int of int

| Add of exp * exp

let rec eval1 (e:exp) : int =
match e with

Int i -> i
| Add (e1, e2) -> (eval1 e1) + (eval1 e2)

let rec eval2 (e:exp) (n:int) : int =
match e with

Int i -> i + n
| Add (e1, e2) -> eval2 e1 (eval2 e2 n)

Strategy: Introduce a new Lemma:
for all e:exp, for all n:int
(eval1 e) + n == eval2 e n

Proof: By induction on the structure of e.
case: e = int i

eval1 (Int i) + n(LHS)
== i + n (by eval of eval1)
== eval2 (Int i) n (by reverse eval of eval2)



Another Example

type exp =
Int of int

| Add of exp * exp

let rec eval1 (e:exp) : int =
match e with

Int i -> i
| Add (e1, e2) -> (eval1 e1) + (eval1 e2)

let rec eval2 (e:exp) (n:int) : int =
match e with

Int i -> i + n
| Add (e1, e2) -> eval2 e1 (eval2 e2 n)

Strategy: Introduce a new Lemma:
for all e:exp, for all n:int
(eval1 e) + n == eval2 e n

Proof: By induction on the structure of e.
case: e = Add(e1, e2)



Another Example

type exp =
Int of int

| Add of exp * exp

let rec eval1 (e:exp) : int =
match e with

Int i -> i
| Add (e1, e2) -> (eval1 e1) + (eval1 e2)

let rec eval2 (e:exp) (n:int) : int =
match e with

Int i -> i + n
| Add (e1, e2) -> eval2 e1 (eval2 e2 n)

Strategy: Introduce a new Lemma:
for all e:exp, for all n:int
(eval1 e) + n == eval2 e n

Proof: By induction on the structure of e.
case: e = Add(e1, e2)

eval2 (Add(e1, e2)) n (RHS)



Another Example

type exp =
Int of int

| Add of exp * exp

let rec eval1 (e:exp) : int =
match e with

Int i -> i
| Add (e1, e2) -> (eval1 e1) + (eval1 e2)

let rec eval2 (e:exp) (n:int) : int =
match e with

Int i -> i + n
| Add (e1, e2) -> eval2 e1 (eval2 e2 n)

Strategy: Introduce a new Lemma:
for all e:exp, for all n:int
(eval1 e) + n == eval2 e n

Proof: By induction on the structure of e.
case: e = Add(e1, e2)

eval2 (Add(e1, e2)) n (RHS)
== eval2 e1 (eval2 e2 n) (eval of eval2)



Another Example

type exp =
Int of int

| Add of exp * exp

let rec eval1 (e:exp) : int =
match e with

Int i -> i
| Add (e1, e2) -> (eval1 e1) + (eval1 e2)

let rec eval2 (e:exp) (n:int) : int =
match e with

Int i -> i + n
| Add (e1, e2) -> eval2 e1 (eval2 e2 n)

Strategy: Introduce a new Lemma:
for all e:exp, for all n:int
(eval1 e) + n == eval2 e n

Proof: By induction on the structure of e.
case: e = Add(e1, e2)

eval2 (Add(e1, e2)) n (RHS)
== eval2 e1 (eval2 e2 n) (eval of eval2)
== eval2 e1 (eval1 e2 + n) (by IH)



Another Example

type exp =
Int of int

| Add of exp * exp

let rec eval1 (e:exp) : int =
match e with

Int i -> i
| Add (e1, e2) -> (eval1 e1) + (eval1 e2)

let rec eval2 (e:exp) (n:int) : int =
match e with

Int i -> i + n
| Add (e1, e2) -> eval2 e1 (eval2 e2 n)

Strategy: Introduce a new Lemma:
for all e:exp, for all n:int
(eval1 e) + n == eval2 e n

Proof: By induction on the structure of e.
case: e = Add(e1, e2)

eval2 (Add(e1, e2)) n (RHS)
== eval2 e1 (eval2 e2 n) (eval of eval2)
== eval2 e1 (eval1 e2 + n) (by IH)
== eval1 e1 + (eval1 e2 + n) (by IH)
== (eval1 e1 + eval1 e2) + n (associativity of +)
== eval1 (Add (e1, e2)) + n (by eval in reverse)



Another Example

type exp =
Int of int

| Add of exp * exp

let rec eval1 (e:exp) : int =
match e with

Int i -> i
| Add (e1, e2) -> (eval1 e1) + (eval1 e2)

let rec eval2 (e:exp) (n:int) : int =
match e with

Int i -> i + n
| Add (e1, e2) -> eval2 e1 (eval2 e2 n)

Strategy: Introduce a new Lemma:
for all e:exp, for all n:int
(eval1 e) + n == eval2 e n

Proof: By induction on the structure of e.
case: e = Add(e1, e2)

eval2 (Add(e1, e2)) n (RHS)
== eval2 e1 (eval2 e2 n) (eval of eval2)
== eval2 e1 (eval1 e2 + n) (by IH)
== eval1 e1 + (eval1 e2 + n) (by IH)
== (eval1 e1 + eval1 e2) + n (associativity of +)
== eval1 (Add (e1, e2)) + n (by eval in reverse)



Another Example

type exp =
Int of int

| Add of exp * exp

let rec eval1 (e:exp) : int =
match e with

Int i -> i
| Add (e1, e2) -> (eval1 e1) + (eval1 e2)

let rec eval2 (e:exp) (n:int) : int =
match e with

Int i -> i + n
| Add (e1, e2) -> eval2 e1 (eval2 e2 n)

Lemma:
for all e:exp, for all n:int
(eval1 e) + n == eval2 e n

Proof: Done!

Back to the Theorem:
for all e:exp, 
eval1 e == eval2 e 0

Proof: 



Another Example

type exp =
Int of int

| Add of exp * exp

let rec eval1 (e:exp) : int =
match e with

Int i -> i
| Add (e1, e2) -> (eval1 e1) + (eval1 e2)

let rec eval2 (e:exp) (n:int) : int =
match e with

Int i -> i + n
| Add (e1, e2) -> eval2 e1 (eval2 e2 n)

Lemma:
for all e:exp, for all n:int
(eval1 e) + n == eval2 e n

Proof: Done!

Back to the Theorem:
for all e:exp, 
eval1 e == eval2 e 0

Proof: 
Pick any e.

eval2 e 0    (RHS)
== eval1 e + 0 (by Lemma, using 0 for n)
== eval1 e (by math)



Quick Question

let rec eval2 (e:exp) (n:int) : int =
match e with

Int i -> i + n
| Add (e1, e2) -> eval2 e1 (eval2 e2 n)

Is eval2 tail recursive?



Quick Question

let rec eval2 (e:exp) (n:int) : int =
match e with

Int i -> i + n
| Add (e1, e2) -> eval2 e1 (eval2 e2 n)

Is eval2 tail recursive?

No!  Lot's of stuff happens after the first recursive call to eval2!



Quick Question

let rec eval2 (e:exp) (n:int) : int =
match e with

Int i -> i + n
| Add (e1, e2) -> eval2 e1 (_________)

let rec eval2 (e:exp) (n:int) : int =
match e with

Int i -> i + n
| Add (e1, e2) -> eval2 e1 (eval2 e2 n)

continuation of eval2 e2 n



Quick Question

let rec eval2 (e:exp) (n:int) (k: int -> int) : int =
match e with

Int i -> k (i + n)
| Add (e1, e2) -> eval2 e2 n (fun m -> eval2 e1 m k)

let rec eval2 (e:exp) (n:int) : int =
match e with

Int i -> i + n
| Add (e1, e2) -> eval2 e1 (_________)

let rec eval2 (e:exp) (n:int) : int =
match e with

Int i -> i + n
| Add (e1, e2) -> eval2 e1 (eval2 e2 n)



Quick Question

let rec eval2 (e:exp) (n:int) (k: int -> int) : int =
match e with

Int i -> k (i + n)
| Add (e1, e2) -> eval2 e2 n (fun m -> eval2 e1 m k)

let rec eval2 (e:exp) (n:int) : int =
match e with

Int i -> i + n
| Add (e1, e2) -> eval2 e1 (_________)

let rec eval2 (e:exp) (n:int) : int =
match e with

Int i -> i + n
| Add (e1, e2) -> eval2 e1 (eval2 e2 n)

continuation of eval2 e1
is whatever eval2 does
when it returns 



Summary
Tail-recursive programs:
• do not do any computation after they make a recursive call
• conversion to CPS is one way to make any computation tail-

recursive
• bottle up the stuff you do after the call into a continuation

Proving programs correct can be arbitrarily hard:
• the difficult part comes in finding auxiliary lemmas to prove. 
• these lemmas must be:

• strong enough to imply the theorem you want
• weak enough that they remain true and can be proven
• insight is needed to find the right middle ground



Challenge:  CPS Convert the incr function
type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
match t with
Leaf -> Leaf

| Node (j,left,right) -> 
Node (i+j, incr left i, incr right i)

Hint:  It is a little easier to put the continuations in the order in which they are called.



Challenge:  CPS Convert the incr function

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) (k: tree -> tree) : tree =
match t with
Leaf -> Leaf

| Node (j,left,right) -> 
let t1 = incr left i in
let t2 = incr right i in
Node (i+j, t1, t2) 

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
match t with
Leaf -> Leaf

| Node (j,left,right) -> 
Node (i+j, incr left i, incr right i)

;; 



Challenge:  CPS Convert the incr function

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) (k: tree -> tree) : tree =
match t with
Leaf -> Leaf

| Node (j,left,right) -> 
let t1 = incr left i in
let t2 = incr right i in
Node (i+j, t1, t2) 

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
match t with
Leaf -> Leaf

| Node (j,left,right) -> 
Node (i+j, incr left i, incr right i)

;; 

called A-Normal  Form
(intermediate computations 
given names; no function calls as 
args to other function calls)



Challenge:  CPS Convert the incr function
type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
match t with
Leaf -> Leaf

| Node (j,left,right) -> 
let t1 = incr left i in
let t2 = incr right i in
Node (i+j, t1, t2)

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) (k: tree -> tree) : tree =
match t with
Leaf -> k Leaf

| Node (j,left,right) -> 
let t1 = incr left i in
let t2 = incr right i in
Node (i+j, t1, t2)) 



Challenge:  CPS Convert the incr function
type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
match t with
Leaf -> Leaf

| Node (j,left,right) -> 
let t1 = incr left i in
let t2 = incr right i in
Node (i+j, t1, t2)

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) (k: tree -> tree) : tree =
match t with
Leaf -> k Leaf

| Node (j,left,right) -> 
incr left i (fun result1 -> 
let t1 = result1 in
let t2 = incr right i in
Node (i+j, t1, t2)) 



Challenge:  CPS Convert the incr function

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) (k: tree -> tree) : tree =
match t with
Leaf -> k Leaf

| Node (j,left,right) -> 
incr left i (fun t1 -> 
let t2 = incr right i in
Node (i+j, t1, t2)) 

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
match t with
Leaf -> Leaf

| Node (j,left,right) -> 
incr left i (fun result1 -> 
let t1 = result1 in
let t2 = incr right i in
Node (i+j, t1, t2)) 



Challenge:  CPS Convert the incr function

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) (k: tree -> tree) : tree =
match t with
Leaf -> k Leaf

| Node (j,left,right) -> 
incr left i (fun t1 -> 
incr right i (fun t2 ->
Node (i+j, t1, t2))) 

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) (k: tree -> tree) : tree =
match t with
Leaf -> k Leaf

| Node (j,left,right) -> 
incr left i (fun t1 -> 
let t2 = incr right i in
Node (i+j, t1, t2)) 



Challenge:  CPS Convert the incr function

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) (k: tree -> tree) : tree =
match t with
Leaf -> k Leaf

| Node (j,left,right) -> 
incr left i (fun t1 -> 
incr right i (fun t2 ->
k (Node (i+j, t1, t2)))) 

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) (k: tree -> tree) : tree =
match t with
Leaf -> k Leaf

| Node (j,left,right) -> 
incr left i (fun t1 -> 
incr right i (fun t2 ->
Node (i+j, t1, t2))) 



In general

let g input =
f3 (f2 (f1 input))

let g input =
let x1 = f1 input in
let x2 = f2 x1    in
f3 x2

let g input k =
f1 input (fun x1 ->
f2 x1    (fun x2 ->
f3 x2 k))

Direct Style

A-normal Form

CPS converted


