
A Space Model

COS 326
David Walker

Princeton University

slides copyright 2018 David Walker
permission granted to reuse these slides for non-commercial educational purposes

Midterm Exam
Instructions to download will be on Piazza

You have 24 hours once you begin
Take-home. You will download the exam to begin your 24 hours.

Earliest Start Time: Sun Oct 21 (12 noon)
Latest Start Time: Tues Oct 23, (11:59pm)

Latest End time: Wed Oct 24 (11:59pm)

(You must hand in the midterm by the end time,
like it is an assignment – no late days allowed.)

Lecture on Wednesday Oct 24 will be cancelled.

Because Halloween draws nigh:

Serial killer or programming languages researcher?

http://www.malevole.com/mv/misc/killerquiz/

3

Space
Understanding the space complexity of functional programs

– At least two interesting components:
• the amount of live space at any instant in time
• the rate of allocation

– a function call may not change the amount of live space by
much but may allocate at a substantial rate

– because functional programs act by generating new data
structures and discarding old ones, they often allocate a lot
» OCaml garbage collector is optimized with this in mind
» interesting fact: at the assembly level, the number of

writes by a functional program is roughly the same as the
number of writes by an imperative program

4

Space
Understanding the space complexity of functional programs

– At least two interesting components:
• the amount of live space at any instant in time
• the rate of allocation

– a function call may not change the amount of live space by
much but may allocate at a substantial rate

– because functional programs act by generating new data
structures and discarding old ones, they often allocate a lot
» OCaml garbage collector is optimized with this in mind
» interesting fact: at the assembly level, the number of

writes by a functional program is roughly the same as the
number of writes by an imperative program

– What takes up space?
• conventional first-order data: tuples, lists, strings, datatypes
• function representations (closures)
• the call stack

5

CONVENTIONAL DATA

6

OCaml Representations for Data Structures
Type:

Representation:

type triple = int * char * int

3 'a' 17(3, 'a', 17)

OCaml Representations for Data Structures
Type:

Representation:

type mylist = int list

30

[] [3; 4; 5]

4 5 0

Type:

Representation:

Space Model

Node
0

3 left right

Leaf Node(3, left, right)

type tree = Leaf | Node of int * tree * tree

9

Allocating space
In C, you allocate when you call “malloc”

In Java, you allocate when you call “new”

What about ML?

10

Allocating space
Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf)

| Node (j, left, right) ->
if i <= j then
Node (j, insert left i, right)

else
Node (j, left, insert right i)

11

Allocating space
Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf)

| Node (j, left, right) ->
if i <= j then
Node (j, insert left i, right)

else
Node (j, left, insert right i)

3

9

15

t

Consider:

insert t 21

12

Allocating space
Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf)

| Node (j, left, right) ->
if i <= j then
Node (j, insert left i, right)

else
Node (j, left, insert right i)

3

9

15

t

Consider:

insert t 21

13

Allocating space
Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf)

| Node (j, left, right) ->
if i <= j then
Node (j, insert left i, right)

else
Node (j, left, insert right i)

3

9

15

21

Consider:

insert t 21

t

14

Allocating space
Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf)

| Node (j, left, right) ->
if i <= j then
Node (j, insert left i, right)

else
Node (j, left, insert right i)

3

9

15

15

21

Consider:

insert t 21

t

15

Allocating space
Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf)

| Node (j, left, right) ->
if i <= j then
Node (j, insert left i, right)

else
Node (j, left, insert right i)

3

9

15

9

15

21

Consider:

insert t 21

t

16

Allocating space
Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf)

| Node (j, left, right) ->
if i <= j then
Node (j, insert left i, right)

else
Node (j, left, insert right i)

3

9

15

3

9

15

21

Consider:

insert t 21

t

17

Allocating space
Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf)

| Node (j, left, right) ->
if i <= j then
Node (j, insert left i, right)

else
Node (j, left, insert right i)

3

9

15

3

9

15

21

Total space allocated is
proportional to the
height of the tree.

~ log n, if tree with n
nodes is balanced

t

18

Net space allocated
The garbage collector reclaims
unreachable data structures on the heap.

John McCarthy
invented g.c.

1960

let fiddle (t: tree) =
insert t 21

3

9

15

3

9

15

21

t

19

Net space allocated
The garbage collector reclaims
unreachable data structures on the heap.

let fiddle (t: tree) =
insert t 21

3

9

15

3

9

15

21

t

If t is dead
(unreachable),

20

Net space allocated
The garbage collector reclaims
unreachable data structures on the heap.

let fiddle (t: tree) =
insert t 21

3

9

15

3

9

15

21

t

If t is dead (unreachable),

Then all these nodes
will be reclaimed!

21

Net space allocated
The garbage collector reclaims
unreachable data structures on the heap.

let fiddle (t: tree) =
insert t 21

3

9

15

3

9

15

21

t

Net new space allocated:
1 node

(just like “imperative” version
of binary search trees)

22

Net space allocated
But what if you want to keep the old tree?

let faddle (t: tree) =
(t, insert t 21)

3

9

15

3

9

15

21

t

faddle(t)

23

Net space allocated
But what if you want to keep the old tree?

let faddle (t: tree) =
(t, insert t 21)

3

9

15

3

9

15

21

t

faddle(t)

Net new space allocated:
log(N) nodes

but note: “imperative” version
would have to copy the old tree,

space cost N new nodes!

24

Compare

let check_option (o:int option) : int option =
match o with
Some _ -> o

| None -> failwith “found none”

let check_option (o:int option) : int option =
match o with
Some j -> Some j

| None -> failwith “found none”

25

Compare

let check_option (o:int option) : int option =
match o with
Some _ -> o

| None -> failwith “found none”

let check_option (o:int option) : int option =
match o with
Some j -> Some j

| None -> failwith “found none”

allocates nothing
when arg is Some i

allocates an option
when arg is Some i

26

Another Example
let cadd (c1:int*int) (c2:int*int) : int*int =
let (x1,y1) = c1 in
let (x2,y2) = c2 in
(x1+x2, y1+y2)

27

allocates
a new pair

Compare

let double (c1:int*int) : int*int =
let c2 = c1 in
cadd c1 c2

let cadd (c1:int*int) (c2:int*int) : int*int =
let (x1,y1) = c1 in
let (x2,y2) = c2 in
(x1+x2, y1+y2)

let double (c1:int*int) : int*int =
cadd c1 c1

let double (c1:int*int) : int*int =
let (x1,y1) = c1 in
cadd (x1,y1) (x1,y1)

28

Compare

let double (c1:int*int) : int*int =
let c2 = c1 in
cadd c1 c2

let double (c1:int*int) : int*int =
cadd c1 c1

let double (c1:int*int) : int*int =
let (x1,y1) = c1 in
cadd (x1,y1) (x1,y1)

1 2

c1 c2

29

let cadd (c1:int*int) (c2:int*int) : int*int =
let (x1,y1) = c1 in
let (x2,y2) = c2 in
(x1+x2, y1+y2)

Compare

let double (c1:int*int) : int*int =
let c2 = c1 in
cadd c1 c2

let double (c1:int*int) : int*int =
cadd c1 c1

let double (c1:int*int) : int*int =
let (x1,y1) = c1 in
cadd (x1,y1) (x1,y1)

1 2

c1

30

let cadd (c1:int*int) (c2:int*int) : int*int =
let (x1,y1) = c1 in
let (x2,y2) = c2 in
(x1+x2, y1+y2)

Compare

let double (c1:int*int) : int*int =
let c2 = c1 in
cadd c1 c2

let double (c1:int*int) : int*int =
cadd c1 c1

let double (c1:int*int) : int*int =
let (x1,y1) = c1 in
cadd (x1,y1) (x1,y1)

1 2

c1

1 2

arg1

1 2

arg2

31

let cadd (c1:int*int) (c2:int*int) : int*int =
let (x1,y1) = c1 in
let (x2,y2) = c2 in
(x1+x2, y1+y2)

Compare

let double (c1:int*int) : int*int =
let c2 = c1 in
cadd c1 c2 no (extra) allocation

let double (c1:int*int) : int*int =
cadd c1 c1

let double (c1:int*int) : int*int =
let (x1,y1) = c1 in
cadd (x1,y1) (x1,y1)

no (extra) allocation

allocates 2 pairs
(unless the compiler
happens to optimize…)

32

let cadd (c1:int*int) (c2:int*int) : int*int =
let (x1,y1) = c1 in
let (x2,y2) = c2 in
(x1+x2, y1+y2)

Compare

let double (c1:int*int) : int*int =
let (x1,y1) = c1 in
cadd c1 c1

double does not
allocate

let cadd (c1:int*int) (c2:int*int) : int*int =
let (x1,y1) = c1 in
let (x2,y2) = c2 in
(x1+x2, y1+y2)

extracts components: it is a read

33

FUNCTION CLOSURES

34

Closures (A reminder)
Nested functions like bar often contain free variables:

Here's bar on its own:

To implement bar, the compiler creates a closure, which is a pair of
code for the function plus an environment holding the free variables.

let foo y =
let bar x = x + y in
bar

35

let bar x = x + y

y is free in the
definition of bar

But what about nested, higher-order functions?
bar again:

bar's representation:

let bar x = x + y

let f2 (n, env) =
n + env.y

{y = 1}

environmentcode

closure

36

But what about nested, higher-order functions?
To estimate the (heap) space used by a program, we often need
to estimate the (heap) space used by its closures.

Our estimate will include the cost of the pair:
• two pointers = two 4-byte values = 8 bytes total +
• the cost of the environment (4 bytes in this case).

let f2 (n, env) =
n + env.y

{y = 1}

environmentcode

37

Space Model Summary
Understanding space consumption in FP involves:

• understanding the difference between
• live space
• rate of allocation

• understanding where allocation occurs
• any time a constructor is used
• whenever closures are created

• understanding the costs of
• data types (fairly similar to Java)
• costs of closures (pair + environment)

38

CONTINUATIONS

39

Some Innocuous Code

(* sum of 0..n *)

let rec sum_to (n:int) : int =
if n > 0 then
n + sum_to (n-1)

else 0

let big_int = 1000000

let _ = sum big_int

40

What’s going to happen when we run this code?

Some Other Code
Four functions: Green works on big inputs; Red doesn’t.

let rec sum_to (n:int) : int =
if n > 0 then
n + sum_to (n-1)

else 0

let sum_to2 (n: int) : int =
let rec aux (n:int) (a:int) : int =
if n > 0 then
aux (n-1) (a+n)

else a
in
aux n 0

let sum (l:int list) : int =
let rec aux (l:int list) (a:int) : int =
match l with

[] -> a
| hd::tail -> aux tail (a+hd)

in
aux l 0

let rec sum2 (l:int list) : int =
match l with

[] -> 0
| hd::tail -> hd + sum2 tail

41

Some Other Code
Four functions: Green works on big inputs; Red doesn’t.

let rec sum_to (n:int) : int =
if n > 0 then
n + sum_to (n-1)

else 0

let sum_to2 (n: int) : int =
let rec aux (n:int) (a:int) : int =
if n > 0 then
aux (n-1) (a+n)

else a
in
aux n 0

let sum (l:int list) : int =
let rec aux (l:int list) (a:int) : int =
match l with

[] -> a
| hd::tail -> aux tail (a+hd)

in
aux l 0

let rec sum2 (l:int list) : int =
match l with

[] -> 0
| hd::tail -> hd + sum2 tail

code that works:
no computation after
recursive function call

42

Tail Recursion

A tail-recursive function does no work after it calls itself recursively.

Not tail-recursive, the substitution model:
(* sum of 0..n *)

let rec sum_to (n:int) : int =
if n > 0 then
n + sum_to (n-1)

else 0
;;

let big_int = 1000000;;

sum big_int;;

sum_to 1000000

43

Tail Recursion

A tail-recursive function does no work after it calls itself recursively.

Not tail-recursive, the substitution model:
(* sum of 0..n *)

let rec sum_to (n:int) : int =
if n > 0 then
n + sum_to (n-1)

else 0
;;

let big_int = 1000000;;

sum big_int;;

sum_to 1000000
-->

1000000 + sum_to 99999

44

Tail Recursion

A tail-recursive function does no work after it calls itself recursively.

Not tail-recursive, the substitution model:
(* sum of 0..n *)

let rec sum_to (n:int) : int =
if n > 0 then
n + sum_to (n-1)

else 0
;;

let big_int = 1000000;;

sum big_int;;

sum_to 1000000
-->

1000000 + sum_to 99999
-->

1000000 + 99999 + sum_to 99998

expression size grows
at every recursive call ...

lots of adding to do after
the call returns”

45

Tail Recursion

A tail-recursive function does no work after it calls itself recursively.

Not tail-recursive, the substitution model:
(* sum of 0..n *)

let rec sum_to (n:int) : int =
if n > 0 then
n + sum_to (n-1)

else 0
;;

let big_int = 1000000;;

sum big_int;;

sum_to 1000000
-->

1000000 + sum_to 99999
-->

1000000 + 99999 + sum_to 99998
-->

...
-->

1000000 + 99999 + 99998 + ... + sum_to 0

46

Tail Recursion

A tail-recursive function does no work after it calls itself recursively.

Not tail-recursive, the substitution model:
(* sum of 0..n *)

let rec sum_to (n:int) : int =
if n > 0 then
n + sum_to (n-1)

else 0
;;

let big_int = 1000000;;

sum big_int;;

sum_to 1000000
-->

1000000 + sum_to 99999
-->

1000000 + 99999 + sum_to 99998
-->

...
-->

1000000 + 99999 + 99998 + ... + sum_to 0
-->

1000000 + 99999 + 99998 + ... + 0

recursion
finally bottoms out

47

Tail Recursion

A tail-recursive function does no work after it calls itself recursively.

Not tail-recursive, the substitution model:
(* sum of 0..n *)

let rec sum_to (n:int) : int =
if n > 0 then
n + sum_to (n-1)

else 0
;;

let big_int = 1000000;;

sum big_int;;

sum_to 1000000
-->

1000000 + sum_to 99999
-->

1000000 + 99999 + sum_to 99998
-->

...
-->

1000000 + 99999 + 99998 + ... + sum_to 0
-->

1000000 + 99999 + 99998 + ... + 0
-->

... add it all back up ...

do a long series
of additions to get
back an int

48

Non-tail recursive

sum_to 10000

stack

let rec sum_to (n:int) : int =
if n > 0 then
n + sum_to (n-1)

else
0

;;

sum_to 10000

49

Non-tail recursive

10000 +

sum_to 9999

stack

let rec sum_to (n:int) : int =
if n > 0 then
n + sum_to (n-1)

else
0

;;

sum_to 10000

50

Non-tail recursive

10000 +

9999 +

sum_to 9998stack

let rec sum_to (n:int) : int =
if n > 0 then
n + sum_to (n-1)

else
0

;;

sum_to 10000

51

Non-tail recursive

10000 +

9999 +

9998 +stack

let rec sum_to (n:int) : int =
if n > 0 then
n + sum_to (n-1)

else
0

;;

sum_to 10000

.

.

.

sum_to 0

52

Non-tail recursive

10000 +

9999 +

9998 +stack

let rec sum_to (n:int) : int =
if n > 0 then
n + sum_to (n-1)

else
0

;;

sum_to 10000

.

.

.

0

53

Non-tail recursive

10000 +

9999 +

nstack

let rec sum_to (n:int) : int =
if n > 0 then
n + sum_to (n-1)

else
0

;;

sum_to 10000

54

Non-tail recursive

10000 +

m

stack

let rec sum_to (n:int) : int =
if n > 0 then
n + sum_to (n-1)

else
0

;;

sum_to 10000

55

Non-tail recursive

result

stack

let rec sum_to (n:int) : int =
if n > 0 then
n + sum_to (n-1)

else
0

;;

sum_to 100

56

Data Needed on Return Saved on Stack

sum_to 10000
-->

...
-->

10000 + 9999 + 9998 + 9997 + ... +
-->

...
-->

...

9996
9997
9998
9999
10000

every non-tail call puts the data from the calling context on the stack

not much space left!
will run out soon!

the stack

57

Memory is partitioned: Stack and Heap

heap space (big!)

stack space
(small!)

58

Tail Recursion
A tail-recursive function is a function that does no work after it
calls itself recursively.

Tail-recursive:
(* sum of 0..n *)

let sum_to2 (n: int) : int =
let rec aux (n:int)(a:int)

: int =
if n > 0 then
aux (n-1) (a+n)

else a
in
aux n 0

;;

sum_to2 1000000

59

Tail Recursion
A tail-recursive function is a function that does no work after it
calls itself recursively.

Tail-recursive:
(* sum of 0..n *)

let sum_to2 (n: int) : int =
let rec aux (n:int)(a:int)

: int =
if n > 0 then
aux (n-1) (a+n)

else a
in
aux n 0

;;

sum_to2 1000000
-->

aux 1000000 0

60

Tail Recursion
A tail-recursive function is a function that does no work after it
calls itself recursively.

Tail-recursive:
(* sum of 0..n *)

let sum_to2 (n: int) : int =
let rec aux (n:int)(a:int)

: int =
if n > 0 then
aux (n-1) (a+n)

else a
in
aux n 0

;;

sum_to2 1000000
-->

aux 1000000 0
-->

aux 99999 1000000

61

Tail Recursion
A tail-recursive function is a function that does no work after it
calls itself recursively.

Tail-recursive:
(* sum of 0..n *)

let sum_to2 (n: int) : int =
let rec aux (n:int)(a:int)

: int =
if n > 0 then
aux (n-1) (a+n)

else a
in
aux n 0

;;

sum_to2 1000000
-->

aux 1000000 0
-->

aux 99999 1000000
-->

aux 99998 1999999

62

Tail Recursion
A tail-recursive function is a function that does no work after it
calls itself recursively.

Tail-recursive:
(* sum of 0..n *)

let sum_to2 (n: int) : int =
let rec aux (n:int)(a:int)

: int =
if n > 0 then
aux (n-1) (a+n)

else a
in
aux n 0

;;

sum_to2 1000000
-->

aux 1000000 0
-->

aux 99999 1000000
-->

aux 99998 1999999
-->

...
-->

aux 0 (-363189984)
-->

-363189984

(addition overflow occurred
at some point)

constant size expression
in the substitution model

63

Tail Recursion
A tail-recursive function is a function that does no work after it
calls itself recursively.

(* sum of 0..n *)

let sum_to2 (n: int) : int =
let rec aux (n:int)(a:int)

: int =
if n > 0 then
aux (n-1) (a+n)

else a
in
aux n 0

;;

aux 10000 0

stack

64

Tail Recursion
A tail-recursive function is a function that does no work after it
calls itself recursively.

(* sum of 0..n *)

let sum_to2 (n: int) : int =
let rec aux (n:int)(a:int)

: int =
if n > 0 then
aux (n-1) (a+n)

else a
in
aux n 0

;;

aux 9999 10000

stack

65

Tail Recursion
A tail-recursive function is a function that does no work after it
calls itself recursively.

(* sum of 0..n *)

let sum_to2 (n: int) : int =
let rec aux (n:int)(a:int)

: int =
if n > 0 then
aux (n-1) (a+n)

else a
in
aux n 0

;;

aux 9998 19999

stack

66

Tail Recursion
A tail-recursive function is a function that does no work after it
calls itself recursively.

(* sum of 0..n *)

let sum_to2 (n: int) : int =
let rec aux (n:int)(a:int)

: int =
if n > 0 then
aux (n-1) (a+n)

else a
in
aux n 0

;;

aux 9997 29998

stack

67

Tail Recursion
A tail-recursive function is a function that does no work after it
calls itself recursively.

(* sum of 0..n *)

let sum_to2 (n: int) : int =
let rec aux (n:int)(a:int)

: int =
if n > 0 then
aux (n-1) (a+n)

else a
in
aux n 0

;;

aux 0 BigNum

stack

68

Question

We used human ingenuity to do the tail-call transform.

Is there a mechanical procedure to transform any recursive
function in to a tail-recursive one?

let sum_to2 (n: int) : int =
let rec aux (n:int)(a:int) : int =
if n > 0 then
aux (n-1) (a+n)

else a
in
aux n 0

;;

let rec sum_to (n: int) : int =
if n > 0 then
n + sum_to (n-1)

else
0

;;
human
ingenuity

not only is sum2
tail-recursive
but it reimplements
an algorithm that
took linear space
(on the stack)
using an algorithm
that executes in
constant space!

69

CONTINUATION-PASSING STYLE
CPS!

70

CPS

CPS:
– Short for Continuation-Passing Style
– Every function takes a continuation (a function) as an argument

that expresses "what to do next"
– CPS functions only call other functions as the last thing they do
– All CPS functions are tail-recursive

Goal:
– Find a mechanical way to translate any function in to CPS

71

Serial Killer or PL Researcher? 72

Serial Killer or PL Researcher?

Gordon Plotkin
Programming languages researcher
Invented CPS conversion.

Call-by-Name, Call-by Value
and the Lambda Calculus. TCS, 1975.

Robert Garrow
Serial Killer

Killed a teenager at a campsite
in the Adirondacks in 1974.
Confessed to 3 other killings.

73

Serial Killer or PL Researcher?

Gordon Plotkin
Programming languages researcher
Invented CPS conversion.

Call-by-Name, Call-by Value
and the Lambda Calculus. TCS, 1975.

Robert Garrow
Serial Killer

Killed a teenager at a campsite
in the Adirondacks in 1974.
Confessed to 3 other killings.

74

Question

Can any non-tail-recursive function be transformed in to a tail-
recursive one? Yes, if we can capture the differential between a
tail-recursive function and a non-tail-recursive one.

Idea: Focus on what happens after the recursive call.

let rec sum (l:int list) : int =
match l with
[] -> 0

| hd::tail -> hd + sum tail
;;

75

Question

Can any non-tail-recursive function be transformed in to a tail-
recursive one? Yes, if we can capture the differential between a
tail-recursive function and a non-tail-recursive one.

Idea: Focus on what happens after the recursive call.
Extracting that piece:

How do we capture it?

let rec sum (l:int list) : int =
match l with
[] -> 0

| hd::tail -> hd + sum tail
;;

hd +

what happens
next

result of recursive
call gets plugged in
here

76

Question

How do we capture that computation?

hd +

fun s -> hd + s

result of recursive
call gets plugged in
here

77

Question

How do we capture that computation?

let rec sum (l:int list) : int =
match l with
[] -> 0

| hd::tail -> hd + sum tail
;;

hd +

fun s -> hd + s

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
match l with
[] -> k 0

| hd::tail -> sum_cont tail (fun s -> ???) ;;

78

Question

How do we capture that computation?

let rec sum (l:int list) : int =
match l with
[] -> 0

| hd::tail -> hd + sum tail
;;

hd +

fun s -> hd + s

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
match l with
[] -> k 0

| hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

79

Question

How do we capture that computation?

let rec sum (l:int list) : int =
match l with
[] -> 0

| hd::tail -> hd + sum tail
;;

hd +

fun s -> hd + s

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
match l with
[] -> k 0

| hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = ??

80

Question

How do we capture that computation?

let rec sum (l:int list) : int =
match l with
[] -> 0

| hd::tail -> hd + sum tail
;;

hd +

fun s -> hd + s

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
match l with
[] -> k 0

| hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)

81

Execution

sum [1;2]

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
match l with
[] -> k 0

| hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)

82

Execution

sum [1;2]
-->

sum_cont [1;2] (fun s -> s)

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
match l with
[] -> k 0

| hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)

83

Execution

sum [1;2]
-->

sum_cont [1;2] (fun s -> s)
-->

sum_cont [2] (fun s -> (fun s -> s) (1 + s));;

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
match l with
[] -> k 0

| hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)

84

Execution

sum [1;2]
-->

sum_cont [1;2] (fun s -> s)
-->

sum_cont [2] (fun s -> (fun s -> s) (1 + s));;
-->

sum_cont [] (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s))

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
match l with
[] -> k 0

| hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)

85

Execution

sum [1;2]
-->

sum_cont [1;2] (fun s -> s)
-->

sum_cont [2] (fun s -> (fun s -> s) (1 + s));;
-->

sum_cont [] (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s))
-->

(fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s)) 0

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
match l with
[] -> k 0

| hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)

86

Execution

sum [1;2]
-->

sum_cont [1;2] (fun s -> s)
-->

sum_cont [2] (fun s -> (fun s -> s) (1 + s));;
-->

sum_cont [] (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s))
-->

(fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s)) 0
-->

(fun s -> (fun s -> s) (1 + s)) (2 + 0))

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
match l with
[] -> k 0

| hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)

87

Execution

sum [1;2]
-->

sum_cont [1;2] (fun s -> s)
-->

sum_cont [2] (fun s -> (fun s -> s) (1 + s));;
-->

sum_cont [] (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s))
-->

(fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s)) 0
-->

(fun s -> (fun s -> s) (1 + s)) (2 + 0))
-->

(fun s -> s) (1 + (2 + 0))

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
match l with
[] -> k 0

| hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)

88

Execution

sum [1;2]
-->

sum_cont [1;2] (fun s -> s)
-->

sum_cont [2] (fun s -> (fun s -> s) (1 + s));;
-->

sum_cont [] (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s))
-->

(fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s)) 0
-->

(fun s -> (fun s -> s) (1 + s)) (2 + 0))
-->

(fun s -> s) (1 + (2 + 0))
-->

1 + (2 + 0)
-->

3

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
match l with
[] -> k 0

| hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)

89

Question

sum [1;2]
-->

sum_cont [1;2] (fun s -> s)
-->

sum_cont [2] (fun s -> (fun s -> s) (1 + s));;
-->

sum_cont [] (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s))
-->

...
-->

3

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
match l with
[] -> k 0

| hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)

Where did the stack space go?

90

sum_cont []
(fun s3 ->
(fun s2 ->
(fun s1 -> s1) (hd1 + s2)

) (hd2 + s3)
)

function inside
function inside
function inside
expression

a stack of
closures on
the heap

each function
is a closure;
points to the
closure inside it

91

sum_cont
stack

(fun s3 ->
(fun s2 ->
(fun s1 -> s1) (hd1 + s2)

) (hd2 + s3)
)

heap

1

sum_cont []
(fun s3 ->
(fun s2 ->
(fun s1 -> s1) (hd1 + s2)

) (hd2 + s3)
)

2

function inside
function inside
function inside
expression

a stack of
closures on
the heap

92

sum_cont
stack

hd1 = 1

k =

fun s env ->
env.k (env.hd1 + s)

fun s env -> s

hd2 = 2

k =

fun s env ->
env.k (env.h2 + s)

heap

1

sum_cont []
(fun s3 ->
(fun s2 ->
(fun s1 -> s1) (hd1 + s2)

) (hd2 + s3)
)

2

function inside
function inside
function inside
expression

a stack of
closures on
the heap

Back to stacks
let rec sum_to (n:int) : int =
if n > 0 then
n + sum_to (n-1)

else
0

;;

sum_to 100

100 +

99 +

sum_to 98

stack
function

that called
sum_to

99

Back to stacks
let rec sum_to (n:int) : int =
if n > 0 then
n + sum_to (n-1)

else
0

;;

sum_to 100

100 +

99 +

sum_to 98

stack
function

that called
sum_to

but how do you really implement that?

100

Back to stacks
let rec sum_to (n:int) : int =
if n > 0 then
n + sum_to (n-1)

else
0

;;

sum_to 100

100 +

99 +

sum_to 98

stack
function

that called
sum_to

but how do you really implement that?

there is two bits of information here:
(1) some state (n=100) we had to remember
(2) some code we have to run later

101

Back to stacks

n = 100

return_address
stack

let rec sum_to (n:int) : int =
if n > 0 then
n + sum_to (n-1)

else
0

;;

sum_to 100

fun s stack ->
return (stack.n + s)

100 +

99 +

sum_to 98

stack

n = 99

return_address

fun s stack ->
return (stack.n + s)

function
that called

sum_to

return_address
state

sum_to 98

with reality added

code we have to
run next

102

n = 100

return_address

fun s stack ->
return (stack.n+s)

n = 99

return_address

fun s stack ->
return (stack.n+s)

return_address
state

sum_to 98

sum_to_cont 98 k3

n = 100

k =

fun s env ->
env.k (env.n + s)

fun s env -> s

n = 99

k =

fun s env ->
env.k (env.n + s)

with the stack

with the heap

stack

103

n = 100

return_address

fun s stack ->
return (stack.n+s)

n = 99

return_address

fun s stack ->
return (stack.n+s)

return_address
state

sum_to 98

sum_to_cont 98 k3

n = 100

k =

fun s env ->
env.k (env.n + s)

fun s env -> s

n = 99

k =

fun s env ->
env.k (env.n + s)

with the stack

with the heap

stack

CPS

104

Why CPS?
Continuation-passing style is inevitable.

It does not matter whether you program in Java or C or OCaml --
there’s code around that tells you “what to do next”

– If you explicitly CPS-convert your code, “what to do next” is
stored on the heap

– If you don’t, it’s stored on the stack

If you take a conventional compilers class, the continuation will be
called a return address (but you’ll know what it really is!)

The idea of a continuation is much more general!

105

Standard ML of New Jersey

Your compiler can put all the continuations in
the heap so you don’t have to (and you don’t
run out of stack space)!

Other pros:

• light-weight concurrent threads

Some cons:

• hardware architectures optimized to use a
stack

• need tight integration with a good garbage
collector

seeEmpirical and Analytic Study of Stack versus
Heap Cost for Languages with Closures. Shao &
Appel

106

http://www.cs.princeton.edu/~appel/papers/stack2.pdf

Call-backs: Another use of continuations

Call-backs:

request_url : url -> (html -> 'a) -> 'a

request_url "http://www.s.com/i.html" (fun html -> process html)

continuation

107

Challenge: CPS Convert the incr function

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
match t with
Leaf -> Leaf

| Node (j,left,right) -> Node (i+j, incr left i, incr right i)
;;

Hint 1: introduce one let expression for each function call:
let x = incr left i in ...

Hint 2: you will need two continuations

109

CPS Convert the incr function

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
match t with
Leaf -> Leaf

| Node (j,left,right) -> Node (i+j, incr left i, incr right i)
;;

type cont = tree -> tree ;;

let rec incr_cps (t:tree) (i:int) (k:cont) : tree =
match t with
Leaf -> k Leaf

| Node (j,left,right) -> ...
;;

110

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
match t with
Leaf -> Leaf

| Node (j,left,right) -> Node (i+j, incr left i, incr right i)
;;

Node (i+j, ___________ , incr right i)

Node (i+j, left_done, ______________)

first continuation:

second continuation:

111

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
match t with
Leaf -> Leaf

| Node (j,left,right) -> Node (i+j, incr i left, incr i right)
;;

fun left_done -> Node (i+j, left_done , incr right i)

fun right_done -> k (Node (i+j, left_done, right_done))

first continuation:

second continuation:

112

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
match t with
Leaf -> Leaf

| Node (j,left,right) -> Node (i+j, incr left i, incr right i)
;;

fun left_done ->
let k2 =
(fun right_done ->

k (Node (i+j, left_done, right_done))
)

in
incr right i k2

second continuation
inside

first continuation:

113

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
match t with
Leaf -> Leaf

| Node (j,left,right) -> Node (i+j, incr left i, incr right i)
;;

type cont = tree -> tree ;;

let rec incr_cps (t:tree) (i:int) (k:cont) : tree =
match t with
Leaf -> k Leaf

| Node (j,left,right) ->
let k1 = (fun left_done ->

let k2 = (fun right_done ->
k (Node (i+j, left_done, right_done)))

in
incr_cps right i k2

)
in
incr_cps left i k1

;;

let incr_tail (t:tree) (i:int) : tree = incr_cps t i (fun t -> t);;

114

CORRECTNESS OF A CPS
TRANSFORM

115

Are the two functions the same?

Here, it is really pretty tricky to be sure you've done it right if you
don't prove it. Let's try to prove this theorem and see what
happens:

let rec sum (l:int list) : int =
match l with
[] -> 0

| hd::tail -> hd + sum tail
;;

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
match l with
[] -> k 0

| hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum2 (l:int list) : int = sum_cont l (fun s -> s)

for all l:int list,
sum_cont l (fun x -> x) == sum l

116

Attempting a Proof

for all l:int list, sum_cont l (fun s -> s) == sum l

Proof: By induction on the structure of the list l.

case l = []
...

case: hd::tail
IH: sum_cont tail (fun s -> s) == sum tail

117

Attempting a Proof

for all l:int list, sum_cont l (fun s -> s) == sum l

Proof: By induction on the structure of the list l.

case l = []
...

case: hd::tail
IH: sum_cont tail (fun s -> s) == sum tail

sum_cont (hd::tail) (fun s -> s)
==

118

Attempting a Proof

for all l:int list, sum_cont l (fun s -> s) == sum l

Proof: By induction on the structure of the list l.

case l = []
...

case: hd::tail
IH: sum_cont tail (fun s -> s) == sum tail

sum_cont (hd::tail) (fun s -> s)
== sum_cont tail (fn s' -> (fn s -> s) (hd + s')) (eval)

119

Attempting a Proof

for all l:int list, sum_cont l (fun s -> s) == sum l

Proof: By induction on the structure of the list l.

case l = []
...

case: hd::tail
IH: sum_cont tail (fun s -> s) == sum tail

sum_cont (hd::tail) (fun s -> s)
== sum_cont tail (fn s' -> (fn s -> s) (hd + s')) (eval)
== sum_cont tail (fn s' -> hd + s') (eval)

120

Need to Generalize the Theorem and IH

for all l:int list, sum_cont l (fun s -> s) == sum l

Proof: By induction on the structure of the list l.

case l = []
...

case: hd::tail
IH: sum_cont tail (fun s -> s) == sum tail

sum_cont (hd::tail) (fun s -> s)
== sum_cont tail (fn s' -> (fn s -> s) (hd + s')) (eval)
== sum_cont tail (fn s' -> hd + s') (eval)

== darn!

we'd like to use the IH, but we can't!
we might like:

sum_cont tail (fn s' -> hd + s') == sum tail

... but that's not even true

not the identity continuation
(fun s -> s) like the IH requires

121

Need to Generalize the Theorem and IH

for all l:int list,
for all k:int->int, sum_cont l k == k (sum l)

122

Need to Generalize the Theorem and IH

for all l:int list,
for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = []

must prove: for all k:int->int, sum_cont [] k == k (sum [])

123

Need to Generalize the Theorem and IH

for all l:int list,
for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = []

must prove: for all k:int->int, sum_cont [] k == k (sum [])

pick an arbitrary k:

124

for all l:int list,
for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = []

must prove: for all k:int->int, sum_cont [] k == k (sum [])

pick an arbitrary k:

sum_cont [] k

125Need to Generalize the Theorem and IH

Need to Generalize the Theorem and IH

for all l:int list,
for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = []

must prove: for all k:int->int, sum_cont [] k == k (sum [])

pick an arbitrary k:

sum_cont [] k
== match [] with [] -> k 0 | hd::tail -> ... (eval)
== k 0 (eval)

126

Need to Generalize the Theorem and IH

for all l:int list,
for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = []

must prove: for all k:int->int, sum_cont [] k == k (sum [])

pick an arbitrary k:

sum_cont [] k
== match [] with [] -> k 0 | hd::tail -> ... (eval)
== k 0 (eval)

== k (sum [])

127

Need to Generalize the Theorem and IH

for all l:int list,
for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = []

must prove: for all k:int->int, sum_cont [] k == k (sum [])

pick an arbitrary k:

sum_cont [] k
== match [] with [] -> k 0 | hd::tail -> ... (eval)
== k 0 (eval)

== k (0) (eval, reverse)
== k (match [] with [] -> 0 | hd::tail -> ...) (eval, reverse)
== k (sum [])

case done!

128

Need to Generalize the Theorem and IH
for all l:int list,
for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = [] ===> done!

case l = hd::tail

IH: for all k':int->int, sum_cont tail k' == k' (sum tail)

Must prove: for all k:int->int, sum_cont (hd::tail) k == k (sum (hd::tail))

129

Need to Generalize the Theorem and IH
for all l:int list,
for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = [] ===> done!

case l = hd::tail

IH: for all k':int->int, sum_cont tail k' == k' (sum tail)

Must prove: for all k:int->int, sum_cont (hd::tail) k == k (sum (hd::tail))

Pick an arbitrary k,

sum_cont (hd::tail) k

130

Need to Generalize the Theorem and IH
for all l:int list,
for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = [] ===> done!

case l = hd::tail

IH: for all k':int->int, sum_cont tail k' == k' (sum tail)

Must prove: for all k:int->int, sum_cont (hd::tail) k == k (sum (hd::tail))

Pick an arbitrary k,

sum_cont (hd::tail) k
== sum_cont tail (fun s -> k (hd + s)) (eval)

131

Need to Generalize the Theorem and IH
for all l:int list,
for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = [] ===> done!

case l = hd::tail

IH: for all k':int->int, sum_cont tail k' == k' (sum tail)

Must prove: for all k:int->int, sum_cont (hd::tail) k == k (sum (hd::tail))

Pick an arbitrary k,

sum_cont (hd::tail) k
== sum_cont tail (fun s -> k (hd + s)) (eval)

== (fun s -> k (hd + s)) (sum tail) (IH with IH quantifier k'
replaced with (fun s -> k (hd+s))

132

Need to Generalize the Theorem and IH
for all l:int list,
for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = [] ===> done!

case l = hd::tail

IH: for all k':int->int, sum_cont tail k' == k' (sum tail)

Must prove: for all k:int->int, sum_cont (hd::tail) k == k (sum (hd::tail))

Pick an arbitrary k,

sum_cont (hd::tail) k
== sum_cont tail (fun s -> k (hd + s)) (eval)

== (fun s -> k (hd + s)) (sum tail) (IH with IH quantifier k'
replaced with (fun s -> k (hd+s))

== k (hd + (sum tail)) (eval, since sum total and
and sum tail valuable)

133

Need to Generalize the Theorem and IH
for all l:int list,
for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = [] ===> done!

case l = hd::tail

IH: for all k':int->int, sum_cont tail k' == k' (sum tail)

Must prove: for all k:int->int, sum_cont (hd::tail) k == k (sum (hd::tail))

Pick an arbitrary k,

sum_cont (hd::tail) k
== sum_cont tail (fun s -> k (hd + s)) (eval)

== (fun s -> k (hd + s)) (sum tail) (IH with IH quantifier k'
replaced with (fun s -> k (hd+s))

== k (hd + (sum tail)) (eval, since sum total and
and sum tail valuable)

== k (sum (hd::tail)) (eval sum, reverse)

case done!
QED!

134

Finishing Up
Ok, now what we have is a proof of this theorem:

We can use that general theorem to get what we really want:

So, we've show that the function sum2, which is tail-recursive, is
functionally equivalent to the non-tail-recursive function sum.

for all l:int list,
for all k:int->int, sum_cont l k == k (sum l)

for all l:int list,
sum2 l

== sum_cont l (fun s -> s) (by eval sum2)
== (fun s -> s) (sum l) (by theorem, instantiating k with (fun s -> s)
== sum l (by eval, since sum l valuable)

135

SUMMARY

136

CPS
CPS is interesting and important:
• unavoidable

• assembly language is continuation-passing
• theoretical ramifications

• fixes evaluation order
• call-by-value evaluation == call-by-name evaluation

• efficiency
• generic way to create tail-recursive functions
• Appel's SML/NJ compiler based on this style

• continuation-based programming
• call-backs
• programming with "what to do next"

• implementation-technique for concurrency

137

Summary of the CPS Proof
We tried to prove the specific theorem we wanted:

But it didn't work because in the middle of the proof, the IH didn't
apply -- inside our function we had the wrong kind of continuation
-- not (fun s -> s) like our IH required. So we had to prove a more
general theorem about all continuations.

This is a common occurrence -- generalizing the induction
hypothesis -- and it requires human ingenuity. It's why proving
theorems is hard. It's also why writing programs is hard -- you have
to make the proofs and programs work more generally, around
every iteration of a loop.

for all l:int list, sum_cont l (fun s -> s) == sum l

for all l:int list,
for all k:int->int, sum_cont l k == k (sum l)

138

Overall Summary
We developed techniques for reasoning about the space costs of
functional programs

– the cost of manipulating data types like tuples and trees
– the cost of allocating and using function closures
– the cost of tail-recursive and non-tail-recursive functions

We also talked about some important program transformations:
– closure conversion makes nested functions with free variables into

pairs of closed code and environment
– the continuation-passing style (CPS) transformation turns non-tail-

recursive functions in to tail-recursive ones that use no stack space
• the stack gets moved in to the function closure

– since stack space is often small compared with heap space, it is
often necessary to use continuations and tail recursion
• but full CPS-converted programs are unreadable: use judgement

139

