
OCaml Datatypes

COS 326
David Walker*

Princeton University

 
slides copyright 2017 David Walker

permission granted to reuse these slides for non-commercial educational purposes

* may contain less than 100% David Walker  
slides copyright 2017 David Walker

permission granted to reuse these slides for non-commercial educational purposes

OCaml So Far
• We have seen a number of basic types:

– int
– float
– char
– bool
– string

 2

• We have seen a few structured types:
– pairs
– other tuples
– options
– lists

• In this lecture, we will see some more general ways to define
our own new types and data structures

- (don’t forget unit!)

Type Abbreviations
• We have already seen some type abbreviations:

type point = float * float

 3

Type Abbreviations
• We have already seen some type abbreviations:

• These abbreviations can be helpful documentation:

• But they add nothing of substance to the language
– they are equal in every way to an existing type

type point = float * float

let distance (p1:point) (p2:point) : float =
 let square x = x *. x in
 let (x1,y1) = p1 in
 let (x2,y2) = p2 in
 sqrt (square (x2 -. x1) +. square (y2 -. y1))

 4

Type Abbreviations
• We have already seen some type abbreviations:  
 

• As far as OCaml is concerned, you could have written:

• Since the types are equal, you can substitute the
definition for the name wherever you want
– we have not added any new data structures

type point = float * float

let distance (p1:float*float)
 (p2:float*float) : float =
 let square x = x *. x in
 let (x1,y1) = p1 in
 let (x2,y2) = p2 in
 sqrt (square (x2 -. x1) +. square (y2 -. y1))

 5

DATA TYPES

 6

Data types
• OCaml provides a general mechanism called a data type

for defining new data structures that consist of many
alternatives

type my_bool = Tru | Fal

a value with type my_bool
is one of two things:
• Tru, or
• Fal

read the "|" as "or"

 7

Data types
• OCaml provides a general mechanism called a data type

for defining new data structures that consist of many
alternatives

type my_bool = Tru | Fal

read the "|" as "or"

Tru and Fal are called
"constructors"

 8

a value with type my_bool
is one of two things:
• Tru, or
• Fal

Data types
• OCaml provides a general mechanism called a data type

for defining new data structures that consist of many
alternatives

type my_bool = Tru | Fal

type color = Blue | Yellow | Green | Red

there's no need to stop
at 2 cases; define as many
alternatives as you want

 9

Data types
• OCaml provides a general mechanism called a data type

for defining new data structures that consist of many
alternatives

• Creating values:

type my_bool = Tru | Fal

type color = Blue | Yellow | Green | Red

let b1 : my_bool = Tru
let b2 : my_bool = Fal
let c1 : color = Yellow
let c2 : color = Red

use constructors to create values

 10

Data types

• Using data type values:

type color = Blue | Yellow | Green | Red

let c1 : color = Yellow
let c2 : color = Red

let print_color (c:color) : unit =
 match c with
 | Blue ->
 | Yellow ->
 | Green ->
 | Red ->

use pattern matching to
determine which color
you have; act accordingly

 11

Data types

• Using data type values:

type color = Blue | Yellow | Green | Red

let c1 : color = Yellow
let c2 : color = Red

let print_color (c:color) : unit =
 match c with
 | Blue -> print_string "blue"
 | Yellow -> print_string "yellow"
 | Green -> print_string "green"
 | Red -> print_string "red"

 12

Data types

• Using data type values:

type color = Blue | Yellow | Green | Red

let c1 : color = Yellow
let c2 : color = Red

let print_color (c:color) : unit =
 match c with
 | Blue -> print_string "blue"
 | Yellow -> print_string "yellow"
 | Green -> print_string "green"
 | Red -> print_string "red"

Why not just use strings to represent colors instead of defining a new type?

 13

 oops!:

Data types

type color = Blue | Yellow | Green | Red

let print_color (c:color) : unit =
 match c with
 | Blue -> print_string "blue"
 | Yellow -> print_string "yellow"
 | Red -> print_string "red"

Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
Green

 14

 oops!:

Data types

type color = Blue | Yellow | Green | Red

let print_color (c:color) : unit =
 match c with
 | Blue -> print_string "blue"
 | Yellow -> print_string "yellow"
 | Red -> print_string "red"

 15

Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
Green

OCaml's data type mechanism allow you to create types
that contain precisely the values you want!

Data Types Can Carry Additional Values
• Data types are more than just enumerations of

constants:

• Read as: a simple_shape is either:
– a Circle, which contains a pair of a point and float, or
– a Square, which contains a pair of a point and float

type point = float * float

type simple_shape =
 Circle of point * float
| Square of point * float

(x,y)
s (x,y)

r

 16

Data Types Can Carry Additional Values
• Data types are more than just enumerations of

constants:

type point = float * float

type simple_shape =
 Circle of point * float
| Square of point * float

let origin : point = (0.0, 0.0)

let circ1 : simple_shape = Circle (origin, 1.0)
let circ2 : simple_shape = Circle ((1.0, 1.0), 5.0)
let square : simple_shape = Square (origin, 2.3)

 17

type point = float * float

type simple_shape =
 Circle of point * float
| Square of point * float

let origin : point = (0.0, 0.0)

let circ1 : simple_shape = Circle (origin, 1.0)
let circ2 : simple_shape = Circle ((1.0, 1.0), 5.0)
let square : simple_shape = Square (origin, 2.3)

Isn’t all that overkill?

type point = float * float

type simple_shape =
 Circle of point * float
| Square of point * float

let origin : point = (0.0, 0.0)

let circ1 : simple_shape = Circle (origin, 1.0)
let circ2 : simple_shape = Circle ((1.0, 1.0), 5.0)
let square : simple_shape = Square (origin, 2.3)

 18

let simple_area (s:simple_shape) : float = 
 let (pt,len) = s in  
 (* ??? Float.pi * len * len or len * len ??? *)

Data Types Carry Semantic Meaning

type point = float * float

type simple_shape =
 Circle of point * float
| Square of point * float

let simple_area (s:simple_shape) : float =
 match s with
 | Circle (_, radius) -> Float.pi *. radius *. radius
 | Square (_, side) -> side *. side

 19

More General Shapes

r1
r2

Square s =

Ellipse (r1, r2) =

s2
s1RtTriangle (s1, s2) =

v2

v1 v3

v4v5

Polygon [v1; ...;v5] =

type point = float * float

type shape =
 Square of float
 | Ellipse of float * float
 | RtTriangle of float * float
 | Polygon of point list

s

 20

More General Shapes

type point = float * float
type radius = float
type side = float

type shape =
 Square of side
 | Ellipse of radius * radius
 | RtTriangle of side * side
 | Polygon of point list

Type abbreviations can
aid readability

r1
r2

Square s =

Ellipse (r1, r2) =

s2
s1RtTriangle (s1, s2) =

v2

v1 v3

v4v5

Polygon [v1; ...;v5] =

s

 21

More General Shapes

type point = float * float
type radius = float
type side = float

type shape =
 Square of side
 | Ellipse of radius * radius
 | RtTriangle of side * side
 | Polygon of point list

let sq : shape = Square 17.0
let ell : shape = Ellipse (1.0, 2.0)
let rt : shape = RtTriangle (1.0, 1.0)
let poly : shape = Polygon [(0., 0.); (1., 0.); (0.; 1.)]

they are all shapes;
they are constructed in
 different ways

Polygon builds a shape
from a list of points
(where each point is itself a pair)

Square builds a shape
from a single side

RtTriangle builds a shape
from a pair of sides

 22

What am I?

type point = float * float
type radius = float
type side = float

type shape =
 Square of side
 | Ellipse of radius * radius
 | RtTriangle of side * side
 | Polygon of point list

let constructedSquare (s:shape) : bool =  
 match s with  
 Square _ -> true
 | _ -> false

 23

a data type also defines
a pattern for matching

Square carries a value
with type float but we  
don’t actually use it here

What am I?

type point = float * float
type radius = float
type side = float

type shape =
 Square of side
 | Ellipse of radius * radius
 | RtTriangle of side * side
 | Polygon of point list

let isQuadrilateral (s:shape) : bool =  

 24

What am I?

type point = float * float
type radius = float
type side = float

type shape =
 Square of side
 | Ellipse of radius * radius
 | RtTriangle of side * side
 | Polygon of point list

let isQuadrilateral (s:shape) : bool =  
 match s with
 Square _ -> true
 | Polygon l -> List.length l = 4
 | _ -> false

 25

Polygon carries a value
with type point list so l is
a pattern for int list values

Alternative 2nd pattern: 
Polygon _::_::_::_::[] -> true

Area (redux)

type point = float * float
type radius = float
type side = float

type shape =
 Square of side
 | Ellipse of radius * radius
 | RtTriangle of side * side
 | Polygon of point list

let area (s : shape) : float =
 match s with
 | Square s ->
 | Ellipse (r1, r2)->
 | RtTriangle (s1, s2) ->
 | Polygon ps ->

 26

Area (redux)

type point = float * float
type radius = float
type side = float

type shape =
 Square of side
 | Ellipse of radius * radius
 | RtTriangle of side * side
 | Polygon of point list

let area (s : shape) : float =
 match s with
 | Square s -> s *. s
 | Ellipse (r1, r2)-> pi *. r1 *. r2
 | RtTriangle (s1, s2) -> s1 *. s2 /. 2.
 | Polygon ps -> ???

 27

Computing Area
• How do we compute polygon area?
• For convex polygons:

– Case: the polygon has fewer than 3 points:
• it has 0 area! (it is a line or a point or nothing at all)

– Case: the polygon has 3 or more points:
• Compute the area of the triangle formed by the first 3 vertices
• Delete the second vertex to form a new polygon
• Sum the area of the triangle and the new polygon

v2

v1 v3

v4v5

= +

 28

Computing Area
• How do we compute polygon area?
• For convex polygons:

– Case: the polygon has fewer than 3 points:
• it has 0 area! (it is a line or a point or nothing at all)

– Case: the polygon has 3 or more points:
• Compute the area of the triangle formed by the first 3 vertices
• Delete the second vertex to form a new polygon
• Sum the area of the triangle and the new polygon

• Note: This is a beautiful inductive algorithm:
– the area of a polygon with n points is computed in terms of

a smaller polygon with only n-1 points!

v2

v1 v3

v4v5

= +

 29

let poly_area (ps : point list) : float =
 match ps with
 | p1 :: p2 :: p3 :: tail ->
 tri_area p1 p2 p3 +. poly_area (p1::p3::tail)
 | _ -> 0.

Computing Area

v2

v1 v3

v4v5
=

let area (s : shape) : float =
 match s with
 | Square s -> s *. s
 | Ellipse (r1, r2)-> r1 *. r2
 | RtTriangle (s1, s2) -> s1 *. s2 /. 2.
 | Polygon ps -> poly_area ps

= +

This pattern says the
list has at least 3 items

 30

+

Computing Area

let area (s : shape) : float =
 match s with
 | Square s -> s *. s
 | Ellipse (r1, r2)-> pi *. r1 *. r2
 | RtTriangle (s1, s2) -> s1 *. s2 /. 2.
 | Polygon ps -> poly_area ps

let tri_area (p1:point) (p2:point) (p3:point) : float =
 let a = distance p1 p2 in
 let b = distance p2 p3 in
 let c = distance p3 p1 in
 let s = 0.5 *. (a +. b +. c) in
 sqrt (s *. (s -. a) *. (s -. b) *. (s -. c))

let rec poly_area (ps : point list) : float =
 match ps with
 | p1 :: p2 :: p3 :: tail ->
 tri_area p1 p2 p3 +. poly_area (p1::p3::tail)
 | _ -> 0.

 31

INDUCTIVE DATA TYPES

 32

Inductive data types
• We can use data types to define inductive data
• A binary tree is:

– a Leaf containing no data
– a Node containing a key, a value, a left subtree and a right

subtree

 33

type key = string
type value = int

type tree =
 Leaf
| Node of key * value * tree * tree

Inductive data types
• We can use data types to define inductive data
• A binary tree is:

– a Leaf containing no data
– a Node containing a key, a value, a left subtree and a right

subtree

 34

type key = int
type value = string

type tree =
 Leaf
| Node of key * value * tree * tree

Inductive data types

let rec insert (t:tree) (k:key) (v:value) : tree =

 35

type key = int
type value = string

type tree =
 Leaf
| Node of key * value * tree * tree

Inductive data types

let rec insert (t:tree) (k:key) (v:value) : tree =
 match t with
 | Leaf ->
 | Node (k', v', left, right) ->

Again, the type definition
specifies the cases you must
consider

 36

type key = int
type value = string

type tree =
 Leaf
| Node of key * value * tree * tree

Inductive data types

let rec insert (t:tree) (k:key) (v:value) : tree =
 match t with
 | Leaf -> Node (k, v, Leaf, Leaf)
 | Node (k', v', left, right) ->

 37

type key = int
type value = string

type tree =
 Leaf
| Node of key * value * tree * tree

Inductive data types

let rec insert (t:tree) (k:key) (v:value) : tree =
 match t with
 | Leaf -> Node (k, v, Leaf, Leaf)
 | Node (k', v', left, right) ->
 if k < k' then
 Node (k', v', insert left k v, right)
 else if k > k' then
 Node (k', v', left, insert right k v)
 else
 Node (k, v, left, right)

 38

type key = int
type value = string

type tree =
 Leaf
| Node of key * value * tree * tree

Inductive data types

let rec insert (t:tree) (k:key) (v:value) : tree =
 match t with
 | Leaf -> Node (k, v, Leaf, Leaf)
 | Node (k', v', left, right) ->
 if k < k' then
 Node (k', v', insert left k v, right)
 else if k > k' then
 Node (k', v', left, insert right k v)
 else
 Node (k, v, left, right)

 39

type key = int
type value = string

type tree =
 Leaf
| Node of key * value * tree * tree

Inductive data types

let rec insert (t:tree) (k:key) (v:value) : tree =
 match t with
 | Leaf -> Node (k, v, Leaf, Leaf)
 | Node (k', v', left, right) ->
 if k < k' then
 Node (k', v', insert left k v, right)
 else if k > k' then
 Node (k', v', left, insert right k v)
 else
 Node (k, v, left, right)

Note on
memory

use

 40

Inductive data types: Another Example
• Recall, we used the type "int" to represent natural numbers

– but that was kind of broken: it also contained negative
numbers

– we had to use a dynamic test to guard entry to a function:

– it would be nice if there was a way to define the natural
numbers exactly, and use OCaml's type system to guarantee
no client ever attempts to double a negative number

let double (n : int) : int =
 if n < 0 then
 raise (Failure "negative input!")
 else
 double_nat n

 41

Inductive data types
• Recall, a natural number n is either:

– zero, or
– m + 1

• We use a data type to represent this definition exactly:

 42

Inductive data types
• Recall, a natural number n is either:

– zero, or
– m + 1, where m is a natural number

• We use a data type to represent this definition exactly:

type nat = Zero | Succ of nat

 43

Inductive data types
• Recall, a natural number n is either:

– zero, or
– m + 1, where m is a natural number

• We use a data type to represent this definition exactly:

type nat = Zero | Succ of nat

let rec nat_to_int (n : nat) : int =
 match n with
 Zero -> 0
 | Succ n -> 1 + nat_to_int n

 44

Careful: note shadowing.  
This is a binding site, not 
the function parameter.

Inductive data types
• Recall, a natural number n is either:

– zero, or
– m + 1, where m is a natural number

• We use a data type to represent this definition exactly:

type nat = Zero | Succ of nat

let rec nat_to_int (n : nat) : int =
 match n with
 Zero -> 0
 | Succ n -> 1 + nat_to_int n

let rec double_nat (n : nat) : nat =
 match n with
 | Zero -> Zero
 | Succ m -> Succ (Succ(double_nat m))

 45

Example Type Design 46

IBM developed GML (Generalize Markup Language) in 1969
• http://en.wikipedia.org/wiki/IBM_Generalized_Markup_Language
• Precursor to SGML, HTML and XML

:h1.Chapter 1: Introduction
:p.GML supported hierarchical containers, such as
:ol
:li.Ordered lists (like this one),
:li.Unordered lists, and
:li.Definition lists
:eol.
as well as simple structures.
:p.Markup Minimization (later generalized and
formalized in SGML), allowed the end-tags to be omitted
for the “h1” and “p” elements.

http://en.wikipedia.org/wiki/IBM_Generalized_Markup_Language
http://en.wikipedia.org/wiki/IBM_Generalized_Markup_Language

Simplified GML 47

To process a GML document, an OCaml program would:
• Read a series of characters from a text file
• Parse GML structure
• Represent the information content as an OCaml data

structure
• Analyze or transform the data structure
• Print/Store/Communicate results

We will focus on how to represent and transform the
information content of a GML document.

Example Type Design 48

• A GML document consists of:
– a list of elements

• An element is either:
– a word or markup applied to an element

• Markup is either:
– italicize, bold, or a font name

Example Type Design 49

type markup = Ital | Bold | Font of string

type elt =
 Words of string list  
| Formatted of markup * elt

type doc = elt list

• A GML document consists of:
– a list of elements

• An element is either:
– a word or markup applied to an element

• Markup is either:
– italicize, bold, or a font name

Example Data 50

type markup = Ital | Bold | Font of string

type elt =
 Words of string list  
| Formatted of markup * elt

type doc = elt list

let d = [Formatted (Bold,
 Formatted (Font “Arial”,  
 Words [“Chapter”;“One”]));

 Words [“It”; ”was”; ”a”; ”dark”;
 ”&”; ”stormy; ”night.”; "A"];

 Formatted (Ital, Words[“shot”]);

 Words [“rang”; ”out.”]];;

Challenge 51

• Change all of the “Arial” fonts in a document to
“Courier”.

• Of course, when we program functionally, we implement
change via a function that
– receives one data structure as input
– builds a new (different) data structure as an output

Challenge 52

• Change all of the “Arial” fonts in a document to
“Courier”.
type markup = Ital | Bold | Font of string

type elt =
 Words of string list  
| Formatted of markup * elt

type doc = elt list

Challenge 53

• Change all of the “Arial” fonts in a document to
“Courier”.

• Technique: approach the problem top down, do doc first:
let rec chfonts (elts:doc) : doc =

type markup = Ital | Bold | Font of string

type elt =
 Words of string list  
| Formatted of markup * elt

type doc = elt list

Challenge 54

• Change all of the “Arial” fonts in a document to
“Courier”.

• Technique: approach the problem top down, do doc first:
let rec chfonts (elts:doc) : doc =
 match elts with
 | [] ->
 | hd::tl ->

type markup = Ital | Bold | Font of string

type elt =
 Words of string list  
| Formatted of markup * elt

type doc = elt list

Challenge 55

• Change all of the “Arial” fonts in a document to
“Courier”.

• Technique: approach the problem top down, do doc first:
let rec chfonts (elts:doc) : doc =
 match elts with
 | [] -> []
 | hd::tl -> (chfont hd)::(chfonts tl)

type markup = Ital | Bold | Font of string

type elt =
 Words of string list  
| Formatted of markup * elt

type doc = elt list

Changing fonts in an element 56

• Change all of the “Arial” fonts in a document to
“Courier”.

• Next work on changing the font of an element:

type markup = Ital | Bold | Font of string

type elt =
 Words of string list  
| Formatted of markup * elt

type doc = elt list

let rec chfont (e:elt) : elt =

Changing fonts in an element 57

• Change all of the “Arial” fonts in a document to
“Courier”.

• Next work on changing the font of an element:

type markup = Ital | Bold | Font of string

type elt =
 Words of string list  
| Formatted of markup * elt

type doc = elt list

let rec chfont (e:elt) : elt =
 match e with
 | Words ws ->
 | Formatted(m,e) ->

Changing fonts in an element 58

• Change all of the “Arial” fonts in a document to
“Courier”.

• Next work on changing the font of an element:

type markup = Ital | Bold | Font of string

type elt =
 Words of string list  
| Formatted of markup * elt

type doc = elt list

let rec chfont (e:elt) : elt =
 match e with
 | Words ws -> Words ws
 | Formatted(m,e) ->

Changing fonts in an element 59

• Change all of the “Arial” fonts in a document to
“Courier”.

• Next work on changing the font of an element:
let rec chfont (e:elt) : elt =
 match e with
 | Words ws -> Words ws
 | Formatted(m,e) -> Formatted(chmarkup m, chfont e)

type markup = Ital | Bold | Font of string

type elt =
 Words of string list  
| Formatted of markup * elt

type doc = elt list

Changing fonts in an element 60

• Change all of the “Arial” fonts in a document to
“Courier”.

• Next work on changing a markup:
let chmarkup (m:markup) : markup =

type markup = Ital | Bold | Font of string

type elt =
 Words of string list  
| Formatted of markup * elt

type doc = elt list

Changing fonts in an element 61

• Change all of the “Arial” fonts in a document to
“Courier”.

• Next work on changing a markup:
let chmarkup (m:markup) : markup =
 match m with
 | Font “Arial” -> Font “Courier”
 | _ -> m

type markup = Ital | Bold | Font of string

type elt =
 Words of string list  
| Formatted of markup * elt

type doc = elt list

Summary: Changing fonts in an element 62

• Change all of the “Arial” fonts in a document to “Courier”
• Lesson: function structure follows type structure

let chmarkup (m:markup) : markup =
 match m with
 | Font “Arial” -> Font “Courier”
 | _ -> m

let rec chfont (e:elt) : elt =
 match e with
 | Words ws -> Words ws
 | Formatted(m,e) -> Formatted(chmarkup m, chfont e)

let rec chfonts (elts:doc) : doc =
 match elts with
 | [] -> []
 | hd::tl -> (chfont hd)::(chfonts tl)

Poor Style 63

• Consider again our definition of markup and markup
change:
type markup =
 Ital | Bold | Font of string

let chmarkup (m:markup) : markup =
 match m with
 | Font “Arial” -> Font “Courier”
 | _ -> m

Poor Style 64

• What if we make a change:

type markup =
 Ital | Bold | Font of string | TTFont of string

let chmarkup (m:markup) : markup =
 match m with
 | Font “Arial” -> Font “Courier”
 | _ -> m

the underscore silently catches all possible alternatives

this may not be what we want -- perhaps there is an
Arial TT font

it is better if we are alerted of all functions
whose implementation may need to change

Better Style 65

• Original code:

type markup =
 Ital | Bold | Font of string

let chmarkup (m:markup) : markup =
 match m with
 | Font “Arial” -> Font “Courier”
 | Ital | Bold -> m

Better Style 66

• Updated code:

type markup =
 Ital | Bold | Font of string | TTFont of string

let chmarkup (m:markup) : markup =
 match m with
 | Font “Arial” -> Font “Courier”
 | Ital | Bold -> m

..match m with
 | Font "Arial" -> Font "Courier"
 | Ital | Bold -> m..
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
TTFont _

Better Style 67

• Updated code, fixed:

• Lesson: use the type checker where possible to help you
maintain your code

type markup =
 Ital | Bold | Font of string | TTFont of string

let chmarkup (m:markup) : markup =
 match m with
 | Font "Arial" -> Font "Courier"
 | TTFont "Arial" -> TTFont "Courier"
 | Font s -> Font s
 | TTFont s -> TTFont s
 | Ital | Bold -> m

A couple of practice problems 68

• Write a function that gets rid of immediately redundant
markup in a document.
– Formatted(Ital, Formatted(Ital,e)) can be simplified to

Formatted(Ital,e)
– write maps and folds over markups

• Design a datatype to describe bibliography entries for
publications. Some publications are journal articles,
others are books, and others are conference papers.
Journals have a name, number and issue; books have an
ISBN number; All of these entries should have a title and
author.
– design a sorting function
– design maps and folds over your bibliography entries

To Summarize 69

• Design recipe for writing OCaml code:
– write down English specifications

• try to break problem into obvious sub-problems

– write down some sample test cases
– write down the signature (types) for the code
– use the signature to guide construction of the code:

• tear apart inputs using pattern matching
– make sure to cover all of the cases! (OCaml will tell you)

• handle each case, building results using data constructor
– this is where human intelligence comes into play
– the “skeleton” given by types can almost be done

automatically!
• clean up your code

– use your sample tests (and ideally others) to ensure
correctness

